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Abstract: The design of reliable models to predict corporate distress is crucial as the likelihood of 

filing for bankruptcy increases with the level and persistency of distress. Although a large number 

of modelling and prediction frameworks for corporate failure and distress has been proposed, the 

relative performance evaluation of competing prediction models remains an exercise that is mono-

criterion in nature, which leads to conflicting rankings of models. This methodological issue is 

addressed by Mousavi et al (2015) by proposing an orientation-free super-efficiency data 

envelopment analysis model as a multi-criteria assessment framework. This data envelopment 

analysis (DEA) model is static in nature. In this research, we propose a dynamic DEA framework 

to assess the relative performance of an exhaustive range of distress prediction models and rank 

them accordingly. In addition, we address several research questions including how robust is the 

out-of-sample performance of dynamic distress prediction models relative to static ones with 

respect to sample type and sample period length? and to what extend the choice of distress 

definition affects the ranking of competing prediction models before, during, and after an 

important event?  
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1. Introduction 

Predicting bankruptcy or corporate failure before it happens has such economic benefits for a range 

of stakeholders (e.g., managers, investors, auditors, regulators) that a large number of prediction 

models have been designed. In practice, managers could use distress prediction models as early 

warning systems to take proper preventive actions against bankruptcy. From a conceptual point of 

view, failure and distress predictions are classification problems, which use a number of features 

– often extracted from accounting, market, or macroeconomic information – to classify firms into 

one out of two or more risk categories. During the last decades, numerous studies have employed 

different types of prediction models or methods from fields such as probability and statistics, 

operations research, and artificial intelligence – for a detailed classification of distress prediction 

models, we refer the reader to Aziz and Dar (2006), Bellovary et al. (2007) and Abdou and Pointon 

(2011). 

With the increasing number of prediction models, a strand of the literature has focused on assessing 

the performance of these models and identifying the factors that drive performance such as 

modelling frameworks, features selection, estimation methods, sampling, and performance criteria 

and their measures (Zhou, 2013; Mousavi et al., 2015). As demonstrated by Mousavi et al. (2015), 

the performance of prediction models is not only dependent on the nature of the modelling 

frameworks and the type of features, but also on the performance evaluation process and the 

underlying performance evaluation methodology (e.g., mono-criterion methodologies, multi-

criteria methodologies) and the performance criteria and measures with which it is fed. In fact, 

recent comparative studies have compared the performance of competing failure prediction models 

grounded into different modelling frameworks (e.g., Wu et al., 2010; Fedorova et al., 2013; Bauer 

and Agarwal, 2014; Mousavi et al., 2015) and using alternative sampling techniques (e.g., Gilbert 

et al., 1990; Neves and Vieira, 2006; Zhou, 2013), various features (e.g., Tinoco and Wilson, 2013; 

Trujillo-Ponce et al., 2014; Mousavi et al., 2015), different feature selection procedures (e.g., Tsai, 

2009; Unler and Murat, 2010) and a range of performance criteria (e.g., discriminatory power, 

calibration accuracy, information content, correctness of categorical prediction) and their measures 

along with different performance evaluation methodologies (Mousavi et al., 2015). 
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Our survey of the literature on comparative studies of failure prediction models revealed a variety 

of shortcomings that prevent practitioners from an efficient ranking of models. As pointed out by 

Bauer and Agarwal (2014), the literature on comparative studies suffers from two main drawbacks. 

First, most of the existing studies failed to have a comprehensive comparison between all types of 

prediction models; i.e., traditional statistical models, contingent claims analysis (CCA) models, 

and survival analysis (SA) models. Second, the existing literature has used a restricted number of 

criteria to evaluate the performance of competing models. To have a more comprehensive 

comparative assessment, Bauer and Agarwal (2014) evaluated the performance of Taffler (1983), 

Bharath and Shumway (2008) and Shumway (2001) as representative of the traditional statistical 

models, CCA models and SA models, respectively. Further, they applied three types of criteria; 

namely, discriminatory power, information content, and correctness of categorical prediction to 

compare the performance of these models. On the other hand, Mousavi et al. (2015) emphasized a 

methodological shortcoming in comparative studies arguing that although some studies consider 

multiple criteria and related measures to compare competing models, the nature of the comparison 

exercise remains mono-criterion, as they use a single measure of a single criterion at a time. The 

drawback of this mono-criterion approach is that the rankings corresponding to different criteria 

are often different (e.g., Bandyopadhyay, 2006; Theodossiou, 1991; Tinoco and Wilson, 2013), 

which result in a situation where one cannot make an informed decision as to which model 

performs best when taken all criteria into consideration. To overcome this methodological 

drawback, Mousavi et al. (2015) proposed a multi-criteria assessment framework; namely, an 

orientation-free super-efficiency data envelopment analysis. Finally, Zavgren (1983) argued that 

most traditional failure and distress prediction models are based on the assumption that the 

relationship between the dependent variable (e.g., probability of failure) and all independent 

variables (e.g., accounting and market information) is stable over time. Empirical studies, 

however, indicate that this stability is highly arguable (e.g., Charitou et al., 2004; du Jardin and 

Séverin, 2012) and that the performance of models is sensitive to changes in macroeconomic 

conditions (Mensah, 1984; Platt et al., 1994). For example, the logit model of Ohlson (1980) 

performs better in the mid- to late 1980s, whereas the SA model of Shumway (2001) outperforms 

other models in the 2000s. The changes in patterns of accounting- and market-based information 
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during time suggest that prediction models need to be re-estimated frequently to encompass the 

most recent patterns of information (Grice and Ingram, 2001). In this research, we argue that 

another shortcoming of the existing literature lies in the use of static performance evaluation 

frameworks to compare prediction models, and we propose a dynamic multi-criteria performance 

evaluation framework. 

Recent studies have substituted financial distress for corporate failure in the implementation of 

failure prediction models (e.g., Tinoco and Wilson, 2013; Geng et al., 2015; Wanke et al., 2015; 

Laitinen and Suvas, 2016). Financial distress refers to the inability of a company to pay its financial 

obligations as they mature (Beaver, 1966). Obviously, the financial situation of a distressed 

company differs from a healthy one suggesting that, while a company moves toward deterioration, 

its financial features shift towards the characteristics of failed firms. This movement towards 

failure is a process that could take several time periods (e.g., years) and manifest itself through a 

variety of signals, which could prevent failure, if predicted with a reasonable level of accuracy. In 

this research, in addition to proposing new models to predict distress or detect its signals, we 

propose a dynamic multi-criteria framework for assessing and monitoring the performance of 

distress prediction models, which, as a by-product, allows one to detect signals of distress. To the 

best of our knowledge, no previous research proposed a dynamic framework for the performance 

evaluation and monitoring of prediction models. In practice, such a framework for the early 

detection of signs of distress is both necessary and beneficial.  

In this paper, we contribute to the academic literature in several respects. First, following the lead 

of Xu and Ouenniche (2012) and Mousavi et al. (2015) who proposed static multi-criteria 

frameworks for assessing the relative performance of prediction models, we propose a new 

dynamic multi-criteria framework for assessing and monitoring the relative performance of 

prediction models over time and ranking them. Second, we consider a more in-depth classification 

of statistical distress prediction models and perform an exhaustive evaluation taking into account 

the most popular models of each class. In sum, we assess the performance of univariate 

discriminant analysis (UDA), multivariate discriminant analysis (MDA), linear probability 

analysis (LPA), probit analysis (PA) and logit analysis (LA) models as traditional techniques; 
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Black-Scholes-Merton (BSM)-based models, naïve BSM-based models, and naïve down-and-out 

call (DOC) barrier option models as contingent claims analysis (CCA) models; and duration 

independent and duration dependent survival analysis (SA) models. To best of our knowledge, this 

study is the first to propose the Cox model with time-varying variables using UK data for distress 

prediction, or equivalently estimating distress probabilities. To date, this study provides the most 

comprehensive empirical comparative analysis of statistical distress prediction models. Third, we 

provide answers to several important research questions using a rolling horizon sampling 

framework and a dynamic performance evaluation and monitoring framework: What category of 

information or combination of categories of information enhances the predictive ability of models 

best? and How the out-of-sample performance of dynamic distress prediction models compare to 

the out-of-sample performance of static ones with respect to sample type and sample period 

length?  

The rest of the paper unfolds as follows. Section 2 reviews the literature on advances in and 

comparative studies on distress prediction models. Section 3 describes the proposed dynamic 

multi-criteria framework; namely, a non-oriented super-efficiency Malmquist DEA, for the 

comparison of prediction models. Section 4 provides details on our experimental design including 

data, sample selection, and the variety of distress prediction models compared as part of this study. 

Section 5 summarises our empirical results and discusses our findings. Finally, section 6 concludes 

the paper.  

 

2. Comparative studies on distress prediction models 

In this section, we provide a concise account of advances on distress prediction modeling (see 

section 2.1) along with a detailed survey of comparative studies (see section 2.2). 

2.1. Advances in distress prediction models  

Failure and distress prediction models could be divided into several categories depending on the 

choice of the classification criteria. In this paper, we focus on a variety of models but the artificial 

intelligence and mathematical programming ones. In sum, we consider the first generation of 
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models; namely, discriminant analysis (DA) models (e.g., Beaver, 1966, 1968; Altman, 1968; 

Deakin, 1972; Blum, 1974; Altman et al., 1977), the second generation of models; namely, 

probability models such as linear probability (LP) models (e.g., Meyer and Pifer, 1970), logit 

analysis (LA) models (e.g., Martin, 1977; Ohlson, 1980), and probit analysis (PA) models (e.g., 

Zmijewski, 1984), and the third generation of models; namely, survival analysis (SA) models (e.g., 

Lane et al., 1986; Crapp and Stevenson, 1987; Luoma and Laitinen, 1991; Shumway, 2001) and 

contingent claims analysis (CCA) models (e.g., Hillegeist et al., 2004; Bharath and Shumway, 

2008).  

Beaver (1966, 1968) is the pioneering study which proposed a univariate discriminant analysis 

model fed with financial ratios information to predict failure. However, the first multivariate study 

was undertaken by Altman (1968) who estimated a score, commonly referred to as a “Z-score”, as 

a proxy of the financial situation of a company using multivariate discriminant analysis (MDA). 

The suggested MDA technique was frequently used in later studies (e.g., Deakin, 1972; Blum, 

1974; Altman et al., 1977; Altman, 1983). The majority of subsequent studies applied the second 

generation models; that is, linear probability models (e.g., Meyer and Pifer, 1970), logit models 

(e.g., Martin, 1977; Ohlson, 1980), and probit models (e.g., Zmijewski, 1984). These first and 

second generations of models could be viewed as empirical models in that they are driven by 

practical considerations such as an accurate prediction of the risk class or an accurate estimate of 

the probability of belonging to a risk class; in sum, the choice of the explanatory variables is driven 

by the predictive performance of the models. These models and their usage in some previous 

studies are not without limitations. In fact, some of the assumptions underlying the modelling 

frameworks may not be reasonably satisfied for some datasets, on one hand, and earliest studies 

restricted the type of information to accounting-based one. In addition, these models are static in 

nature and therefore fail to properly account of changes over time in the profiles of companies. 

The third generation of models; namely, survival analysis (SA) models and contingent claims 

analysis (CCA) models overcome some of these issues. In fact, the underlying modelling 

frameworks of both SA models and CCA models are dynamic by design. In addition, most 

previous studies made use of additional sources of information to enhance the performance of 

these models; namely, market-based information (e.g., Hillegeist et al., 2004; Bharath and 
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Shumway, 2008) and macroeconomic information (e.g., Tinoco and Wilson, 2013; Kim and 

Partington, 2014; Charalambakis and Garrett, 2015) although one might argue that the 

approximation process of unobservable variables (e.g., volatility, expected return, market value of 

assets) is not free of potential measurement errors (Aktug, 2014). To be more specific, SA models 

are used to estimate time-varying probabilities of failure. Despite the application of SA models in 

failure prediction dates back to the mid-1980s (e.g., Lane et al., 1986; Crapp and Stevenson, 1987; 

Luoma and Laitinen, 1991), Shumway (2001) was the pioneering study which made its use popular 

by providing an attractive estimation methodology based on an equivalence between multi-period 

logit models and a discrete-time hazard model. Thereafter, the suggested discrete-time hazard 

model – also referred to as a discrete-time logit model – was frequently used in later studies (e.g., 

Chava and Jarrow, 2004; Wu et al., 2010; Tinoco and Wilson, 2013; Bauer and Agarwal, 2014) to 

estimate the coefficients of time-varying accounting and market-based covariates of SA models. 

Unlike, the first generation models, the second generation models, and SA models, which are 

empirical models, CCA models – also referred to as Black-Scholes-Merton (BSM)-based models 

– are theoretically grounded. In fact, these models are grounded into option-pricing theory, as set 

out in Black and Scholes (1973) and Merton (1974) whereby the equity holders’ position in a firm 

is assumed to be the long position in a call option. Therefore, as suggested by McDonald (2002), 

the probability of failure could be interpreted as the likelihood that the value of firm’s assets will 

be less than the face value of firm’s liabilities at maturity; i.e., the call option expires worthless. 

These models make use of market-based information by incorporating company stock returns and 

their volatility in estimating the probability of failure (Hillegeist et al., 2004; Bharath and 

Shumway, 2008). Like any modelling framework, CCA models are not without their limitations. 

For example, CCA models implicitly assume that the liabilities of the firm have the same 

maturities, which in practice is a limitation (Saunders and Allen, 2002). 

2.2. Comparative studies of failure prediction models 

This section provides a survey on the studies, which focus on the comparison of different types of 

failure or distress prediction models; namely, the first generation of models, the second generation 

of models, and the third generation of models. Our survey focus is on models and performance 



8 

 

 

criteria and their measures, which have been applied by the existing literature on the evaluation of 

competing prediction models.  

Comparison between first and second generation models: Before the breakthrough model of 

Shumway (2001), the first and second generations of models were the prevailing techniques in 

classification. Since the implementation of DA in failure prediction by Beaver (1966) and Altman 

(1968) to the early 1980s,  MDA was the superior method for predicting corporate failure. In fact, 

ease of use and interpretation were the main reasons of the popularity of DA. However, the validity 

of these models depends on the extent to which the underlying assumptions (i.e., multivariate 

normality, equal groups’ variance-covariate matrices) hold in a dataset. From the 1980s to 2001, 

LA models (introduced by Ohlson, 1980) and PA models (introduced by Zmijewski, 1984) became 

the prevailing techniques. Despite the fact that probability models are more attractive from a 

practical perspective in that the underlying assumptions are less restrictive, most comparative 

studies have indicated that the prediction powers of LA models and PA models are similar to those 

of DA models (e.g., Press and Wilson, 1978; Collins and Green, 1982; Lo, 1986). A notable 

exception is Lennox (1999) who suggested that well-specified probit and logit models outperform 

DA models. 

Comparison between first and second-generation models and survival analysis models: From a 

conceptual perspective, SA models are superior to discriminant analysis models and probability 

models, because of their dynamic nature. However, empirical results across several comparative 

analyses seem to report mixed findings. From an empirical perspective, the features of a modelling 

framework design that are not being fully supported or exploited by the dataset under consideration 

nullify its conceptual advantage. In sum, the choice combination of a modelling framework and 

the features to feed into it has a more significant role in enhancing or downgrading prediction 

performance. 

For example, Luoma and Laitinen (1991) compared the performance of a semiparametric Cox 

hazard model with a DA model and an LA model – all models fed with accounting based 

information – with respect to type I and type II errors as measures of correctness of categorical 

prediction. The results suggested that the developed SA was inferior to both DA and LA models 
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with respect to type I and type II errors. Further, their research was limited with respect to the 

number of criteria, since they only used correctness of categorical prediction.  

Shumway (2001) proposed a discrete-time SA model – using a multi-period logit estimation 

technique – for failure prediction and compared its performance with the performance of DA, LA 

and PA using overall correct classification rate (OCC) as a measure of correctness of categorical 

prediction. The results indicate that an SA model, which encompasses both accounting and market 

information (respectively, only accounting information) outperforms (respectively, 

underperforms) DA, LA and PA models. However, with respect to the choice of performance 

criteria and their measures, this study is also restricted to correctness of categorical prediction as 

a criterion and overall accuracy – also known as overall correct classification rate – as its measure.  

Comparison between first and second generation models and contingent claims models; Hilligeist 

et al. (2004) compared the performance of an BSM-based model with two types of representative 

models of the first and second generation of models; namely, MDA and LA models (Altman, 1968; 

Ohlson, 1980), respectively. They used Log-Likelihood and Pseudo-R2 as measures of information 

content to evaluate the performance of these models. The results suggested that the BSM-based 

model outperforms both the original and the refitted versions of Altman (1968) and Ohlson (1980) 

models on information content. Furthermore, they found out that the original Altman (1968) with 

coefficients estimated with a small data set from decades earlier outperformed the refitted one with 

updated coefficients using recent data suggesting that refitting models with more recent data does 

not necessarily improve performance. However, this study is restricted to one criterion; i.e., 

information content, for comparing the performance of models.  

Reisz and Perlich (2007) compared the performance of three contingent claims models; namely, a 

BSM model, a KMV model developed by KMV Corporation in 1993 and then acquired by 

Moody's Corporation in 2002, and a Down-and-Out Call option (DOC) model, with the MDA 

model of Altman (1968). Recall that the KMV model – also referred to as the Expected Default 

Frequency (EDF) model – is actually a four-step procedure based on Merton’s framework, which 

determines a default point, estimates asset value and volatility, computes distance to default (DD), 

and converts DD into expected default frequency (EDF). They use ROC as a measure of 
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discriminatory power and Log-Likelihood as a measure of information content. They found out 

that the DOC model outperforms the other types of contingent claims models as well as MDA for 

3-, 5- and 10-year ahead failure prediction. Unexpectedly, Altman (1968) outperforms all 

contingent claims models for 1-year ahead failure prediction. Although this study encompassed 

two types of criteria; i.e., discriminatory power and information content, the comparison is 

somehow incomplete as the log-likelihood cannot be computed for Altman’s model. 

Agarwal and Taffler (2008) compared the performance of two types of BSM models; namely, 

Hillegeist et al. (2004) and Bharath and Shumway (2008), with the MDA model of Taffler (1983) 

with respect to ROC as a measure of discriminatory power, Log-likelihood and Pseudo-R2 as 

measures of information content, and return on assets (ROA) and return on risk weighted assets 

(RORWA) as measures of economic value, given different costs of misclassification. The 

empirical results showed that the MDA model outperforms Hillegeist et al. (2004) significantly on 

ROC as a measure of discriminatory power. Meanwhile, MDA model does not outperform Bharath 

and Shumway (2008) significantly on ROC. On the other hand, with respect to Log-likelihood as 

a measure of information content, Hillegeist et al. (2004) performs significantly better than Bharath 

and Shumway (2008) and MDA model, respectively. However, Pseudo-R2 was higher for Taffler 

(1983) compared to BSM models, which suggests that these two information content measures 

carry different elements of information. Furthermore, taking into account differences in 

misclassification costs, they compared the economic benefit of applying Bharath and Shumway 

(2008) or Taffler (1983) as classifiers using the approach proposed by Blochlinger and Leippold 

(2006). The results suggest that the MDA model of Taffler (1983) outperforms BSM-based 

models. It is worth to mention that with respect to the number of criteria, this study was innovative 

in its era since three criteria; namely, the correctness of categorical prediction, discriminatory 

power and information content, were used for evaluating models. 

Comparison between contingent claims models and survival analysis models: Campbell et 

al.(2008) proposed a duration-dependent SA model and evaluated its performance with the 

performances of a KMV model and the duration-independent SA model of Shumway (2001) using 

log-likelihood and pseudo-R2 as measures of information content. The results indicate that their 
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SA model outperforms both the SA model of Shumway (2001) and the KMV model. However, 

this study fails to incorporate more criteria for comparing the performance of models. 

Comparison between first, second and third generations of models: Wu et al. (2010) compared the 

performance of the MDA model of Altman (1968), the LA model of Ohlson (1980), the PA model 

of Zmijewski (1984), the duration-independent SA model of Shumway (2001) and the BSM model 

of Hillegeist et al. (2004). The results indicate that, with respect to Log-likelihood and Pseudo-R2 

as measures of information content, the discrete time SA model of Shumway outperforms LA, PA, 

BSM and MDA models, respectively. Unexpectedly, with respect to overall correct classification 

rate as a measure of correctness of categorical prediction, Ohlson model of LA outperforms MDA, 

PA, BSM, SA models, respectively, under a rolling window implementation. For ROC as a 

measure of discriminatory power, the authors failed to take account of BSM model, the result 

suggest that the duration-independent SA model of Shumway performs better than LA, MDA, and 

PA, respectively. Referring to the number of criteria, this study puts comparison into effect with 

three types of criteria, namely, the correctness of categorical prediction, discriminatory power, and 

information content. 

To conclude this section, we would like to refer the reader to Appendix A for a summary table of 

the literature on comparative analyses of failure models. We also refer the reader to Appendix C 

of Mousavi et al (2015) for a sample of typical performance criteria and their measures used in 

assessing failure prediction models. 

 

3. A Dynamic Framework for Assessing Distress Prediction Models: Non-Oriented Super-

Efficiency Malmquist DEA 

Malmquist productivity index is a multi-criteria assessment framework for performing 

performance comparisons of DMUs over time. Fare et al. (1992, 1994) employed DEA to extend 

the original Malmquist (1953) and construct the DEA-based Malmquist productivity index as the 

product of two components, one measuring the efficiency change (EC) of DMU with respect to 

the efficiency possibilities defined by the frontier in each period (also referred to as caching-up to 
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the frontier), and the other measuring the efficient frontier-shift (EFS) between the two time 

periods 𝑡 and 𝑡 + 1 (also referred to as change in the technical efficiency evaluation).  

Figure 1: Efficiency Change and Efficient Frontier-Shift 

 

Let 𝑥𝑖0
𝑡  denote the 𝑖th input and 𝑦𝑟0

𝑡  denote the 𝑟th output for 𝐷𝑀𝑈0, both at period 𝑡. The Figure 

1 shows the change of efficiency of 𝐷𝑈𝑀0 from point 𝐴 (with respect to efficient frontier at period 

𝑡) to point 𝐵 (with respect to efficient frontier at period 𝑡 + 1) assuming to have one input and one 

output. The efficiency change (𝐸𝐶) component is measured by the following formula: 

 
EC =

𝑃𝐹
𝑃𝐵⁄

𝑄𝐶
𝑄𝐴⁄

=
Efficiency of DMU0 with respect to the period 𝑡 + 1  

Efficiency of DMU0 with respect to the period 𝑡
 

(1) 

Let Δ𝑡2((𝑥0, 𝑦0)𝑡1) denote the efficiency score of DUM with 𝑥0 input and 𝑦0 output at period 𝑡1 

(say, 𝐷𝑀𝑈(𝑥0, 𝑦0)𝑡1) relative to frontier 𝑡2. Replacing 𝑡1 and 𝑡2 with 𝑡 and 𝑡 + 1, respectively, the 

𝐸𝐶 effect (say, 𝛼) can be presented as: 

 𝐸𝐶:     𝛼 =
Δ𝑡+1((𝑥0, 𝑦0)𝑡+1 )

Δ𝑡((𝑥0, 𝑦0)𝑡)
 (2) 

Thus, 𝐸𝐶 > 1 shows an improvement in relative efficiency from period 𝑡 to 𝑡 + 1, while 𝐸𝐶 =

1 and 𝐸𝐶 < 1 shows stability and deterioration in relative efficiency, respectively.   
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Also, Figure 1 indicates that the reference point of (𝑥0
𝑡 , 𝑦0

𝑡) moved from C on the frontier of period 

𝑡 to D on the frontier of period 𝑡 + 1. Therefore, the efficient frontier-shift (EFS) effect at (𝑥0
𝑡 , 𝑦0

𝑡) 

is equivalent to: 

 

𝐸𝐹𝑆𝑡 =
𝑄𝐶

𝑄𝐷
=

𝑄𝐶
𝑄𝐴⁄

𝑄𝐷
𝑄𝐴⁄

=
Efficiency of (x0

t , y0
t ) with respect of the period t frontier 

Efficiency of (x0
t , y0

t ) with respect of the period t + 1 frontier
  

(3) 

Similarly, the 𝐸𝐹𝑆 effect at (𝑥0
𝑡+1, 𝑦0

𝑡+1) is equivalent to: 

 

𝐸𝐹𝑆𝑡+1 =
𝐵𝐹

𝐵𝐷
=

𝐵𝐹
𝐵𝑄⁄

𝐵𝐷
𝐵𝑄⁄

=
Efficiency of (x0

t+1, y0
t+1)with respect of the period t frontier 

Efficiency of (x0
t+1, y0

t+1)with respect of the period t + 1 frontier
 

(4) 

The EFS component is measured by the geometric mean of EFS effect at (𝑥0
𝑡 , 𝑦0

𝑡) (say, 

𝐸𝐹𝑆𝑡) and EFS effect at (𝑥0
𝑡+1, 𝑦0

𝑡+1) (say, 𝐸𝐹𝑆𝑡+1); 

 𝐸𝐹𝑆 = [𝐸𝐹𝑆𝑡 × 𝐸𝐹𝑆𝑡+1]
1

2⁄  (5) 

Using our notation, the EFS effect can be expressed as: 

 𝐸𝐹𝑆:      𝛽 = [
Δ𝑡((𝑥0, 𝑦0)𝑡)

Δ𝑡+1((𝑥0, 𝑦0)𝑡)
×

Δ𝑡((𝑥0, 𝑦0)𝑡+1)

Δ𝑡+1((𝑥0, 𝑦0)𝑡+1)
]

1/2

 (6) 

Therefore, the Malmquist Productivity index (MPI) can be written as;  

 𝑀𝑃𝐼 = 𝐸𝐶 × 𝐸𝐹𝑆 (7) 

Using our notation, the MPI can be presented as: 
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 𝑀𝑃𝐼:         𝛾 = 𝛼 × 𝛽

=
Δ𝑡+1((𝑥0, 𝑦)𝑡+1 )

Δ𝑡((𝑥0, 𝑦0)𝑡)

× [
Δ𝑡((𝑥0, 𝑦0)𝑡)

Δ𝑡+1((𝑥0, 𝑦0)𝑡)
×

Δ𝑡((𝑥0, 𝑦0)𝑡+1)

Δ𝑡+1((𝑥0, 𝑦0)𝑡+1)
]

1/2

 

(8) 

MPI could be rearranged as; 

 𝛾 = [
Δ𝑡((𝑥0, 𝑦0)𝑡+1)

Δ𝑡((𝑥0, 𝑦0)𝑡)
×

Δ𝑡+1((𝑥0, 𝑦0)𝑡+1)

Δ𝑡+1((𝑥0, 𝑦0)𝑡)
]

1/2

 (9) 

This explanation of MPI could be interpreted as the geometric mean of efficiency change measured 

by period 𝑡 and 𝑡 + 1 technology, respectively. 𝑀𝑃𝐼 > 1 shows an improvement in the total factor 

productivity of 𝐷𝑀𝑈0 from period 𝑡 to 𝑡 + 1 , while 𝑀𝑃𝐼 = 1 and 𝑀𝑃𝐼 < 1 shows stability and 

deterioration in total factor productivity, respectively.   

Comment 1: Caves et al. (1982) introduced a distance function, Δ(. ), to measure technical 

efficiency in the basic CCR model (Charnes et al., 1978). Though, in the non-parametric 

framework, instead of using a distance function, DEA models are implemented. For example, Fare 

et al. (1994) used input (or output) oriented radial DEA to measure the MPI. However, the radial 

model faces a lack of attention to slacks, which could be overcome using Slack-based non-radial 

oriented (or non-oriented) DEA model (Tone, 2001, 2002).  

In this study, we use the non-radial (slack-based measure), non-oriented super- efficiency DEA 

(Tone, 2002, 2001) Malmquist index to evaluate the performance of competing distress prediction 

models. The reason to choose an orientation-free evaluation is that we aim to evaluate distress 

prediction models, and thus, the choice between input-oriented or output-oriented analysis is 

irrelevant. Further, our study is under variable return to scale (VRS) assumption, where input-

oriented and output-oriented analysis may result in different scores and rankings of DMUs. On the 

other hand, the reason to choose non-radial framework is that, radial DEA models may be 

infeasible for some DMUs; therefore, ties would stay in rankings. Moreover, radial DEA models 
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overlook possible slacks in inputs and outputs, and therefore, would possibly over-estimate the 

efficiency scores by ignoring mix efficiency. 

Further, basic DEA techniques cannot distinguish between efficiency DMUs (here, distress 

prediction models) because all their scores are equal to 1 (Anderson and Peterson, 1993). 

Therefore, we choose super-efficiency DEA framework, as we are interested in acquiring a 

complete ranking of distress prediction models.  

Considering the production possibility set 𝑃 defined by Cooper et al. (2006) as  

 𝑃 = {(𝑥, 𝑦)|𝑥 ≥ 𝑋𝑡1𝜆, 𝑦 ≤ 𝑌𝑡1𝜆, 1 ≤ 𝑒𝜆 ≤ 1, 𝜆 ≥ 0}, (10) 

SBM-DEA (Tone, 2001) measures the efficiency of DMU (𝑥0, 𝑦0)𝑡2  (𝑡2 = 1,2) with respect to 

the benchmark set (𝑋, 𝑌)𝑡1(𝑡1 = 1,2) using the following linear programing (LP): 

 

Δ𝑡1((𝑥0, 𝑦0)𝑡2) = min
𝜆,𝑠−,𝑠+

1 −
1
𝑚

∑
𝑠𝑖

−

𝑥𝑖𝑜
𝑡2

𝑚
𝑖=1

1 +
1
𝑟

∑
𝑠𝑖

+

𝑦𝑖𝑜
𝑡2

𝑟
𝑖=1

 

subject to     𝑥𝑜
𝑡2 = 𝑋𝑡1𝜆 + 𝑠−, 

𝑦0
𝑡2 = 𝑌𝑡1𝜆 − 𝑠+ , 

1 ≤ 𝑒𝜆 ≤ 1, 
𝜆 ≥ 0, 𝑠− ≥ 0, 𝑠+ ≥ 0. 

(11) 

where Δ𝑡1((𝑥0, 𝑦0)𝑡2) is the efficiency score of 𝐷𝑀𝑈(𝑥0, 𝑦0)𝑡1 relative to frontier 𝑡2; 𝑋𝑡1 =

(𝑥1
𝑡1 , … , 𝑥𝑛

𝑡1) ∈ ℝ𝑛 and 𝑌𝑡1 = (𝑦1
𝑡1 , … , 𝑦𝑛

𝑡1) ∈ ℝ𝑛 are matrices of inputs and outputs at the period 

𝑡1, respectively; 𝑠− ≥ 0 and 𝑠+ ≥ 0 are the vectors of input surpluses and output shortages in ℝ𝑛, 

respectively, and are named slacks; 𝑒 is a row vector with all items equal to one, and 𝜆 is a 

nonnegative vector in ℝ𝑛. 

Or equivalently;  

 Δ𝑡1((𝑥0, 𝑦0)𝑡2) = min
𝜃,𝜂,𝜆

1
𝑚

∑ 𝜃𝑖
𝑚
𝑖=1

1
𝑟

∑ 𝜂𝑖
𝑟
𝑖=1

 (12) 
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subject to     𝜃𝑖𝑥𝑖𝑜
𝑡2 ≥ ∑ 𝑥𝑖𝑗

𝑡1
𝑛

𝑗=1
𝜆𝑗  (𝑖 = 1, … , 𝑚), 

𝜂𝑖𝑥𝑖𝑜
𝑡2 ≥ ∑ 𝑦𝑖𝑗

𝑡1
𝑛

𝑗=1
𝜆𝑗   (𝑖 = 1, … , 𝑟) , 

𝜃𝑖 ≤ 1(𝑖 = 1, … , 𝑚), 𝜂𝑖 ≥ 1(𝑖 = 1, … , 𝑟), 
1 ≤ 𝑒𝜆 ≤ 1, 

𝜆 ≥ 0. 
 

where 𝜃𝑖and 𝜂𝑖 are (1 −
𝑠𝑖

−

𝑥
𝑖𝑜
𝑡2

) and (1 +
𝑠𝑖

+

𝑦
𝑖𝑜
𝑡2

), respectively.  

Referring to equation 9, someone can use equation 11 to estimated Δ0
𝑡 (𝑥0

𝑡 , 𝑦0
𝑡), Δ0

𝑡+1(𝑥0
𝑡+1, 𝑦0

𝑡+1), 

Δ0
𝑡 (𝑥0

𝑡+1, 𝑦0
𝑡+1) and Δ0

𝑡+1(𝑥0
𝑡 , 𝑦0

𝑡) as four required terms for calculating MPI.  

Comment 2: The main objective of this study is to estimate the relative efficiency of 𝐷𝑀𝑈𝑠 in 

each period. However, the estimated Malmquist productive index, say, 𝑀𝑃𝐼0
𝑡,𝑡+1

, indicates the 

change of efficiency score between period 𝑡 and 𝑡 + 1, and should be modified for our purpose. 

Further, according to Pastor and Lovell (2005), the contemporaneous MPI is not circular, its 

adjacent period components can give conflicting signals, and it is sensitive to LP infeasibility.  

The adjacent reference index, proposed by Fare et al., (1982), suggests multiplying 𝑀𝑃𝐼0
𝑡,𝑡+1

 by 

Δ0
𝑡 (𝑥0

𝑡 , 𝑦0
𝑡), which results in the relative efficiency of 𝐷𝑀𝑈0 at period 𝑡 + 1 compared to period 𝑡. 

However, the main drawback of this index is that it cannot estimate the relative efficiency score 

of non-adjacent periods, e.g., period 𝑡 and 𝑡 + 2 or 𝑡 + 1 and 𝑡 + 3.   

To overcome this drawback, Berg et al, (1992) used a fixed reference index, which compares and 

refers the relative efficiencies of all periods (say, 𝑡 (𝑡 ≥ 2)) to the first period (say, 𝑡 = 1). 

Therefore, it is possible that the efficiency scores of the periods later than the first one are more 

than 1 since the technology develops over time. Although, fixed reference index acquire the 

circularity property with a base period dependence, it remains sensitive to LP infeasibility.  

More recently, Pastor and Lovell (2005) suggested a global MPI index, which its components are 

circular, it provides single measures of productivity change, and it is not susceptible to LP 

infeasibility. Further, in situation where efficient frontiers of multiple periods cross each other, 

global index can be measured by the best practices in all periods.  
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Figure 2: Global Frontier 

 

As Figure 2 presents, the relative efficiency of 𝐷𝑀𝑈0 can be measured in terms of either the 

frontier of period 1 (consists of four DMUs of 1,2,3,4 and 5) or the frontier of period 2 (consist of 

four DMUs of 6,7,8,9 and 10).  An alternative is the global frontier, which is the combination of 

the best DMUs in the history, i.e. five DMUs of 6,7,3,4 and 5.  

It is argued that if the length of observation period is long enough, the current DMUs would be 

covered by the best historical DMUs, probably themselves. As a result, the relative efficiency to 

the global frontier could be considered as an absolute efficiency with the scores less than or equal 

to 1 (Pastor and Lovell, 2005). 

 

4. Empirical investigation 

In this section, we provide the details of our empirical investigation, where we compare the 

performance of both existing and new distress prediction models using both mono- and multi-

criteria performance evaluation frameworks. In the remainder of this section, we shall provide 

details on our dataset (see section 4.1), features selection (see section 4.2), sampling and fitting 

choices (see section 4.3), distress prediction models (see section 4.4), and our empirical results 

and findings (see section 4.5). 
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4.1. Data  

The dataset used in our empirical analysis is chosen as follows. First, we considered all non-

financial and non-utility UK companies listed on the London Stock Exchange (LSE) at any time 

during a 25-year period from 1990 through 2014. Second, since only post-listing information is 

used as input to our prediction models and these models have minimum historical data 

requirements, we excluded companies that have been listed for less than 2 years. 

In all databases, there are several companies with missing data. Our dataset is no exception. 

Excluding those companies with missing data is a source of potential error in evaluating prediction 

models (Zmijewski, 1984; Platt and Platt, 2012). Therefore, in order to minimise any bias related 

to this aspect, we only excluded those companies with missing values for the main accounting 

book items (e.g., sales, total assets) and market information (e.g., price) which are required for 

computing many accounting and market-based ratios (Lyandres and Zhdanov, 2013). The 

remaining companies with missing values were dealt with by replacing the missing values for each 

company by its most recently observed ones (Zhou et al., 2012).  

As to outlier values amongst the observed variables, we winsorized these variables; that is, we sat 

the values lower (respectively, greater) than the 1st (respectively, 99th) percentile of each variable 

equal to that value (Shumway, 2001). 

With respect to the definition of distress, we considered the proposed definition by Pindado et al. 

(2008). The distress definition is represented by a binary variable, say 𝐷, equals 1 for financially 

distressed companies and equals 0 otherwise, where a company is considered financially distressed 

if it meets both of the following conditions: (1) its earnings before interest, taxes, depreciation and 

amortization (EBITDA) is lower than its interest expenses for two consecutive years, and (2) the 

company experience negative growth in market value for two consecutive years. Details on the 

number of companies in our dataset and their distress status are provided in Table 2. Notice that 

the legal aspects of distress complement the financial ones, which strengthens the overall definition 

of distress given that a relatively low proportion of companies fall under code 21. 
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Table 1: Basic Sample Statistics 
This table presents the total number of distressed companies versus healthy ones 

for the period of 1990 and 2014.   

Observation (1990-2014) # % 

Distressed company-year observations (𝐷) 1414 3.82% 

Healthy company-year observations 35,570 96.18% 

Total company-year Observation 36,984 100% 

In sum, our dataset consists of 3,389 companies and 36,984 company-year observations. Among 

the total number of observation, there are 1,414 company-year observations classified as distressed 

resulting in a distress rate average of 3.82% per year. 

Figure 3 displays the market value of LSE as measured by the FTSE-all index, the average of 

financial distress and failure rate during 25 years from 1990 through 2014. This graphical snapshot 

clearly highlights the consistency between our chosen definitions of distress. In addition, the 

percentage of failed companies as well as our distress variables expressed in percentage terms and 

the performance of the UK stock market are, as one would expect, inversely moving together in a 

consistent fashion, which suggest that the use of market information would in principle enhance 

distress prediction. 

Figure 3: Financial distress rate and market value of LSE trend 

 

4.2. Feature Selection 

There is a variety of strategies and methods for identifying the most effective group of features to 

feed failure prediction models with (Balcaen and Ooghe, 2006). Feature selection strategies could 
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be theoretically grounded, empirically grounded, or both – see, for example, Laitinen and Suvara 

(2016). On the other hand, feature selection methods could be objective or subjective. Objective 

feature selection methods could be statistical (e.g., Tsai, 2009; Zhou et al., 2012) or non-statistical 

(e.g., Pacheco et al., 2007, 2009; Unler and Murat, 2010) but adopt a common approach; that is, 

optimizing an effectiveness criterion. Whereas subjective feature selection methods make often 

use of a subjective decision rule including reviewing the literature and selecting the most 

commonly used features (e.g., Ravi Kumar and Ravi, 2007; Zhou, 2013, 2014; du Jardin, 2015; 

Cleary and Hebb, 2016). In this research, we used a statistical objective feature selection method. 

To be more specific, we reduced our very large initial set of accounting-based ratios (i.e., 83 

accounting-based ratios) to 31 accounting-based features using factor analysis, where factors are 

selected so that both the absolute values of their loadings are greater than 0.5 and their communities 

are greater than 0.8, and the stopping criterion is either no improvement in the total explained 

variance or no more variables are excluded. This factor analysis was run using principal component 

analysis with VARIMAX as a factor extraction method (Chen, 2011; Mousavi et al., 2015).  

4.3. Sample Selection   

Following the lead of Mousavi et al. (2015), we test the performance of distress prediction models 

out-of-sample; however, in this paper out-of-sample testing is implemented within a rolling 

horizon framework. The aim here is to find out how robust is the out-of-sample performance of 

dynamic distress prediction models relative to static ones with respect to sample type (i.e., pre-

crisis, crisis period, post-crisis) and sample period length. In our empirical investigation, we 

considered three sample period lengths; namely, 3, 5, and 10 years. In sum, we use firm-year 

observations from year 𝑡 − 𝑛 + 1 to year 𝑡 (𝑛 = 3,5,10) as a training sample to fit models; that is, 

estimate their coefficient. Then, we use the fitted models to predict distress in year 𝑡 + 1. For the 

sake of comparing the predictive ability of different models for different samples and different 

sample period lengths, we are concerned with predicting distress from 2000 onwards; that is, 𝑡 =

1999 to 2013. The reader is referred to Figure 4 for a graphical representation of this process. The 

details about the proportion of distressed firms for each training and holdout sample are presented 

in Table 2.  
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Table 2 : The proportion of distress firms (𝐷) in training and holdout samples 

This table presents the yearly proportion of distress in our training and hold-out samples. The proportion 

of distress is presented based on definition of distress (𝐷) and three different length of training period. 

Hold out 

sample 

3-year training 

sample  

5-year training 

sample 

10-year training 

sample 

Year D % Years D % Years D % Years D % 

2000 1.60% 1997-1999 2.32% 1995-1999 1.79% 1990-1999 2.04% 

2001 1.39% 1998-2000 2.32% 1996-2000 1.96% 1991-2000 2.11% 

2002 6.22% 1999-2001 2.15% 1997-2001 1.99% 1992-2001 1.97% 

2003 11.78% 2000-2002 3.04% 1998-2002 2.89% 1993-2002 2.23% 

2004 3.21% 2001-2003 6.42% 1999-2003 4.82% 1994-2003 3.09% 

2005 2.00% 2002-2004 6.97% 2000-2004 4.77% 1995-2004 3.29% 

2006 3.06% 2003-2005 5.37% 2001-2005 4.76% 1996-2005 3.38% 

2007 4.25% 2004-2006 2.75% 2002-2006 4.99% 1997-2006 3.54% 

2008 5.86% 2005-2007 3.13% 2003-2007 4.62% 1998-2007 3.81% 

2009 10.18% 2006-2008 4.37% 2004-2008 3.69% 1999-2008 4.21% 

2010 4.15% 2007-2009 6.59% 2005-2009 4.94% 2000-2009 4.86% 

2011 1.96% 2008-2010 6.77% 2006-2010 5.41% 2001-2010 5.10% 

2012 5.21% 2009-2011 5.66% 2007-2011 5.37% 2002-2011 5.18% 

2013 8.12% 2010-2012 3.76% 2008-2012 5.63% 2003-2012 5.09% 

2014 5.56% 2011-2013 4.99% 2009-2013 6.01% 2004-2013 4.71% 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4: Rolling window periodic sampling 
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4.4. Distress Prediction Models for Comparative Study 

The academic literature includes a broad number of FPMs, which have been employing to predict 

corporate failure. As mentioned earlier, generally, FPMs could be classified into two main 

categories; namely, statistical models and non-statistical models. The focus of this study is on 

statistical models, which could be classified into two sub-categories, namely, static and dynamic 

models. The selection choice of static models in our comparative analysis is based on two factors; 

the pioneering proposed static frameworks, and the most frequent applied frameworks in other 

comparative studies. Further, the selection choice of dynamic models is based on two criteria; the 

most frequent applied dynamic frameworks in other comparative studies and the recent proposed 

dynamic frameworks in the literature. As a result of mentioned criteria, we end up with four static 

frameworks (i.e., univariate discriminant analysis, multivariate discriminant analysis, logit 

analysis, probit analysis), and four dynamic frameworks (i.e., contingent claim analysis (CCA) 

models, duration independent hazard models without time-invariant baseline, duration 

independent hazard with time invariant baseline and duration dependent hazard with time variant 

baseline).  

To be more specific, the traditional accounting based models considered in our comparative study 

include the univariate discriminant analysis (UDA) model proposed by Beaver (1966); the MDA 

models proposed by Altman (1968), Altman (1983), Taffler (1983) and Lis (1972); the logit model 

proposed by Ohlson (1980); the probit model proposed by Zmijewski (1984); and, the linear 

probability model propose by Theodossiou (1991). The dynamic models considered in our study 

include; BSM-based models proposed by Hillegeist et al. (2004) and Bharath, Shumway (2008) 

and the naïve down-and-out call (DOC) barrier option model proposed by Jackson and Wood 

(2013), duration-independent hazard model with time-invariant baseline proposed by Shumway 

(2001), duration-independent hazard model without time-invariant baseline model, and duration-

dependent with time-variant baseline proposed by Kim and Partington (2014).  
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4.4.1. Traditional statistical techniques 

4.4.1.1. Discriminant analysis (DA) 

DA was firstly proposed by Fisher (1938) to classify an observation into two or several a priori 

categories dependent upon the observation’s individual features. The initial objective of DA is to 

minimize within-group distance and maximize between-group distance (also, referred as 

Mahalanobis distance). Assuming there are 𝑛 groups, the generic form of DA model for the group 

𝑘 could be shown as follows; 

 𝑧𝑘 = 𝑓 (∑ 𝛽𝑘𝑗𝑥𝑗

𝑝

𝑗=1

) (13) 

 

where 𝑥𝑗 is the discriminant features 𝑗, 𝛽𝑘𝑗 is the discriminant coefficients of group 𝑘 for 

discriminant feature 𝑗, 𝑧𝑘 represents the score of group 𝑘, and  is the linear or non-linear 

classifier that maps the scores, say  onto a set of real numbers. Note that to compare DA models 

to other statistical models, we need to estimate the probability of failure, which is used as an input 

for estimating many measures of performance. For this, we follow Hillegeist et al. (2004) in using 

a logit link to calculate the probability of failure for companies; 

 𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒)𝑖 =
𝑒𝑧

1 + 𝑒𝑧
 (14) 

 

The main shortcoming of DA is that its suitability in optimal discrimination between groups rests 

on satisfying two underlying assumptions, i.e., the joint normal distribution of features and equal 

group variance-covariance matrices (Collins and Green, 1982). Although, in practice, the features 

are rarely normally distributed (Eisenbeis, 1977; Mcleay, 1986) and the groups are hardly equal in 

variance-covariance matrices (Hamer, 1983), the robustness of DA against deviation from these 

assumptions for optimality, makes it a widely used method of classification (du Jardin and Séverin, 

2012). In this study, we examine the UDA model proposed by Beaver (1966); the MDA models 

proposed by Altman (1968), Altman (1983), Altman et al. (1995), Taffler (1983) and Lis (1972). 

f

xt
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4.4.1.2. Regression Models 

The linear probability model (LPM), introduced by Meyer and Pifer (1970) in failure prediction, 

is a special case of OLS regression when the dependent variable is dichotomous.  Similar to OLS, 

LPM assumes the linear relationship as 𝑌 = 𝑋𝛽 + 𝜖; where 𝑌 is an 𝑁 × 1 vector of dependent 

variable, 𝑋 is an 𝑁 × 𝐾 matrix of independent variables (features), and, 𝜖 is an 𝑁 × 1 vector of 

error terms with 𝐸(𝜖) = 0. Generally, in case of failure prediction, 𝑌 is a Bernoulli random 

variable (say, 𝑌 equals 1 or 0) and by its very nature two corresponding likelihood, say probability 

of failure  (𝑃) where 𝑌𝑖 = 1 and probability of non-failure (1 − 𝑃) where 𝑌𝑖 = 0 are apparent. 

Given 𝑃 and 1 − 𝑃 and binary values of  𝑌, then 𝐸(𝑌𝑖) = 1(𝑃) + 0(1 − 𝑃) which indicates 

that 𝑋𝛽 = 𝑃. 

One of the major shortcomings of LPM is that 𝜖, which equals to 𝑌 − 𝑋𝛽, could be either 1 − 𝛽𝑋 

(if 𝑌 = 1) or −𝛽𝑋 (if 𝑌 = 0) and as such cannot have a normal distribution. Further, since 𝑌 is 

dichotomous variable, and 𝑃 [𝑜𝑟 𝑋𝛽] is constant, the variance of 𝜖 is same as variance of  𝑌, which 

is a function of 𝑋.  Based on Collins and Green (1982), as far as 𝑌̂ is in the range of 0.2 and 0.8, 

this drawback is not serious, although OLS is not an efficient estimator and someone may employ 

some form of generalized linear square (GLS) to estimate coefficients. Further, practitioner who 

applying LPM have confidence in their technique, and find it fast and flexible method that provides 

a very respectable job of predicting failure with ranking comparable to other methodologies 

(Anderson, 2007; Meyer and Pifer, 1970). 

The generic linear probability model (LPM) results in an estimate of probability of failure, the 

formula for which is as follows; 

 𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒)𝑖 = 𝛽o + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

 (15) 

where 𝑃 is the probability of failure for company  𝑖, 𝛽o is the constant, 𝛽𝑗 is the coefficient of 

variable 𝑥𝑖𝑗.  
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To overcome some of the restriction of DA and LPM, the probability models of logit and probit 

were employed in the literature. More specifically, when using a logit or probit framework, the 

normality and the homoscedasticity assumptions are relaxed. The generic model for binary 

variables could be stated as follows: 

 {
𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒) = 𝑃(𝑌 = 1)

𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒) = 𝐺(𝛽, 𝑋)    
 

(16) 

where 𝑌 denotes the binary response variable, 𝑋 denotes the vector of features,  denotes the 

vector of coefficients of 𝑋 in the model, and 𝐺(. ) is a link function that maps the scores of 𝛽𝑡𝑥, 

onto a probability. In practice, depending on choice of link function, the type of probability model 

is determined. For example, the logit model (respectively, probit model) assumes that the link 

function is the cumulative logistic distribution; say 𝛩 (respectively, cumulative standard normal 

distribution, say 𝑁) function.  

 𝐺(𝛽, 𝑋) = 𝛩−1(𝛽𝑡𝑋) 
(17) 

 𝐺(𝛽, 𝑋) = 𝑁−1(𝛽𝑡𝑋) 
(18) 

In this study, we examine the logit model proposed by Ohlson (1980), the probit model proposed 

by Zmijewski (1984), and the linear probability model proposed by Theodossiou (1991). 

 

4.4.2. Contingent Claims Analysis (CCA) Models  

4.4.2.1. Black Scholes Merton (BSM) Based Models 

These models are based on option-pricing theory of Black and Scholes (1973) and Merton (1974), 

namely BSM, to estimate the probability of failure from market-based information. Before 

explaining the extraction process of the probability of failure from BSM option pricing theory, it 

is worthy to consider some points; first, the basic BSM is used to model the price of an option as 

a function of the underlying stock price and time. Second, a specific type of stochastic process, 

namely, Itô process, where refers to a Generalized Wiener process with both drift and variance 


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rate, has proven to be a valid framework to model stock prices behaviour for derivatives. Third, 

purchasing a company’s equity can be assumed as taking long position in a call option with an 

exercise price equal to the face value of its debt liabilities. Based on the mentioned points, as 

suggested by McDonald (2002) the probability of failure can be extracted as the probability that 

call option expires worthless at the end of maturity date – i.e. the value of the company’s assets 

(𝑉𝑎) be less than the face value of its debt liabilities (𝐿) at the end of the holding period, 𝑃(𝑉𝑎 < 𝐿);  

 𝑃(𝐹𝑎𝑖𝑙𝑢𝑟𝑒) = 𝑁 (−
ln (

𝑉𝑎

𝐿 ) + (𝜇 − 𝛿 − 0.5𝜎𝑎
2) × 𝑇

𝜎𝑎√𝑇
) (19) 

 

where 𝑁(. ) is the cumulative distribution function of the standard Normal distribution, 𝑉𝑎 is the 

value of the company’s assets, 𝜇 is the expected return of company, 𝜎𝑎
2 is the volatility of the 

company’s asset, 𝛿 is the divided rate, which is estimated by the ratio of dividends to the sum of 

total liabilities (𝐿) and market value of equity (𝑉𝑒), 𝐿 is the total liabilities of the company, and 𝑇 

is time to maturity for both of call option and liabilities. However, to estimate probability of failure 

in equation 6, someone needs to estimate unobserved parameters of 𝑉𝑎 and 𝜎𝑎.  

In proposed approach by Hillegeist et al. (2004), 𝑉𝑎 and 𝜎𝑎 are estimated by solving the systems 

of equations; i.e. the call option equation (20.1) and the optimal hedge equation (20.2). 

 {

𝑉𝑒 = 𝑉𝑎𝑒−𝛿𝑇𝑁(𝑑1) − 𝐿𝑒−𝑟𝑇𝑁(𝑑2) + (1 − 𝑒𝛿𝑇)𝑁(𝑑1)𝑉𝑎    (20.1)

𝜎𝑒 =
𝑉𝑎𝑒−𝛿𝑇𝑁(𝑑1)𝜎𝑎

𝑉𝑒
                                                                   (20.2) 

 
(20) 

 

where 𝑉e is the market value of common equity at the time of estimation, 𝜎e is the annualized 

standard deviation of daily stock returns over 12 months prior to estimation, 𝑟 is the risk-free 

interest rate, and 𝑑1 and 𝑑2 are calculated as follows: 

 𝑑1 =
ln(

𝑉𝑎
𝐿

)+(𝑟−𝛿−
1

2
.𝜎𝑒

2)×𝑇

𝜎𝑒√𝑇
; 𝑑2 = 𝑑1 − 𝜎𝑒√𝑇 (21) 
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Then, 𝜇 (expected return of the company) is estimated as follows and is limited between 𝑟 (risk-

free interest rate) and 100%: 

 𝜇 =
𝑉𝑎,𝑡 + 𝐷𝑡 − 𝑉𝑎,𝑡−1

𝑉𝑎,𝑡−1
 (22) 

 

where 𝑉𝑎,𝑡 is the value of the company’s assets in year 𝑡 and 𝑉𝑎,𝑡−1 is the value of the company’s 

assets in year 𝑡 − 1.  

Alternatively, Bharath and Shumway (2008) proposed a naïve approach to estimate 𝑉𝑎 and 𝜎𝑎 as 

follows: 

 
𝑉𝑎 = 𝑉𝑒 + 𝐷 ; 𝜎 =

𝑉𝑒

𝑉𝑎
𝜎𝑒 +

𝐷

𝑉𝑎
𝜎𝑑 (23) 

where 𝜎𝑑 = 0.05 + 0.25𝜎𝑒. Further, the firm’s expected return 𝜇 is proxied by the risk-free rate, 

𝑟 or the stock return of previous year restricted to be between 𝑟 and 100%. 

In this study, we apply BSM-based models proposed by Hillegeist et al. (2004) and Bharath, 

Shumway (2008).  

4.4.2.2. Naïve Down-and-Out Call (DOC) Barrier Option Model 

In extension to BSM model, the barrier option approach assumes that debt holders’ position in a 

firm is like taking positon in a portfolio of risk-free debt and a DOC option with a strike price 

equal to a predetermined barrier. This DOC option can be exercised once the value of the 

company’s assets (𝑉𝑎) is less than the predetermined barrier, 𝐵. (For further details about DOC 

barrier option, the reader is referred to Reisz and Perlich (2007)).  

In the naïve DOC barrier option failure prediction model, proposed by Jackson and Wood (2013), 

the firm’s total liabilities is taken as the barrier, 𝐵. Therefore, the failure is considered as the status 

that the value of the company’s assets be less than total liabilities, i.e., 𝑉𝑎 < 𝐿.  Further, this model 

rest on the assumptions of no dividends, zero rebate, costless failure proceeding, and set return on 

asset equal to risk-free rate. The probability of failure using this model is estimated as follows: 
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𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒) = 𝑁 [
𝑙𝑛 (

𝐿
𝑉𝑎

) − (𝜇 −
1
2

𝜎𝑒
2) 𝑇

𝜎𝑒√𝑇
] + (

𝐿

𝑉𝑎

)

2(𝜇)

𝜎𝑒
2  −1 

𝑁 [
𝑙𝑛 (

𝐿
𝑉𝑎

) − (𝜇 −
1
2

𝜎𝑒
2) 𝑇

𝜎𝑒√𝑇
] (24) 

In this study, we apply naïve DOC barrier option model in comparative analysis. 

 

4.4.3. Survival Analysis (SA) Models 

The survival analysis models are concerned with the analysis of time to event (e.g. failure or 

distress). Two functions of the interest in survival analysis are the survival function, say 𝑆 (𝑡) and 

the hazard function, say ℎ (𝑡). The survival function, 𝑆 (𝑡) is the probability that the duration of 

time till the firm faces the event, 𝑇, is more than some time 𝑡. In other words, 𝑆 (𝑡) can be defined 

as the probability that the firm survives during the time span of 𝑡: 

 
𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = 1 − 𝐹(𝑡) = ∫ 𝑓(𝑢)𝑑𝑢

∞

𝑡

 (25) 

where 𝑇 is the time to failure or the duration of time until firm’s event, which is a continuous 

random variable that follows a probability density function, say 𝑓 (𝑡), and a cumulative density 

function, 𝐹 (𝑡). 

The hazard function or simply hazard, ℎ (𝑡), is the immediate rate of event at time 𝑇 =  𝑡 given 

the firm survival until the start of the period, which can be defined as follows; 

 
ℎ(𝑡) = lim

∆𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡|𝑇 ≥ 𝑡)

∆𝑡
=

𝑓(𝑡)

𝑆(𝑡)
 (26) 

where ℎ(𝑡) is the immediate rate of event at time 𝑇 = 𝑡 conditional on the firm survival up to time 

𝑡.  

The key advantage of survival analysis models is that it controls for both the occurrence and the 

timing of events. While other statistical models estimate the probability of the event using variables 
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based on data at one-time point, survival analysis accommodate changes in the probability of the 

event due to changes in the values of variables over time (Routledge and Morrisons, 2012).  

The pioneer and the most commonly used continues time survival model is the Cox’s (1972) 

semiparametric proportional survival model. The Cox survival model is especially helpful in 

estimating models with time-varying features. Here, the explanatory variables are entitled to vary 

in value over the survival period. Therefore, for example, a vector of ratios giving a firm's total 

debt to assets over a 5-year observation period would be employed as a single variable, but the 

value of that variable would be renewed as the firm is observed over time in the survival model 

estimations. The Cox’s survival model with time-varying features can be presented as (Andersen, 

1992) : 

 

ℎ𝑖(𝑡|𝑥(𝑡)) = exp {∑ 𝛽𝑗𝑥𝑗
𝑖(𝑡)

𝑘

𝑗

} . ℎ0(𝑡) 

 

(27) 

where ℎ𝑖(𝑡|𝑥(𝑡)) denotes the time varying hazard function for firm 𝑖 at time 𝑡, 𝑥𝑗
𝑖(𝑡) represents 

the value of 𝑗th explanatory variable of frim 𝑖 at time 𝑡 , 𝛽𝑗 is the coefficient of the vector 𝑥𝑗
𝑖, and 

ℎ0(𝑡) is the baseline hazard function, which represents the effect of time and could be interpreted 

as the hazard rate with all explanatory variables set to zero. In this structure, the existing hazard 

depends both on the independent variables (using the exp{∑ 𝛽𝑗𝑥𝑗
𝑖(𝑡)𝑘

𝑗 }) and the duration of time 

the firm has been at risk (using ℎ0(𝑡)).  The main advantage of proportional survival models is 

that it allows for estimation of the parameters of interest (𝛽) in the presence of an unknown, and 

possibly complicated, time varying baseline hazard (Beck et al., 1998).  

In the literature of bankruptcy prediction, two types of survival functions have been employed. 

The first type of survival function, after taking logit transformation, is a linear function of features 

(e.g., Chava and Jarrow, 2004; Shumway, 2001). The second type of survival function implements 

the Cox’s proportional survival function (e.g., Allison, 1982; Kim and Partington, 2014). Further, 

the baseline hazard rate, i.e., the hazard rate when all the features are equal to zero, has a key role 
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in prediction of failure using survival functions. Here, we express a classification of survival 

analysis models based on a variety of baseline hazard rate and survival function;  

4.4.3.1. Duration independent hazard models with (and without) time-invariant baseline  

In duration-independent hazard models, the baseline hazard rate could be assumed as a time-

invariant (constant) term. For example, Shumway (2001) introduced a discrete-time hazard model 

using an estimation procedure similar to the one used for estimating the parameters of a multi-

period logit model – this choice is motivated by a proposition whereby he proves that a multi-

period logit model is equivalent to a discrete-time hazard model. Shumway employed a time-

invariant constant term, ln (age), as baseline hazard rate.  

Further, a duration- independent hazard model could be assumed without time-invariant baseline. 

For example, Campbell et al. (2008) employed the suggested discrete time survival models of 

Shumway, but without time-invariant baseline rate.  

4.4.3.2. Duration dependent hazard models with time variant baseline  

A duration-dependent type of the baselines is employed in different ways in the literature. Beck et 

al. (1998) employed time dummies, 𝑘𝑡, representing the length of the sequence of zeros that 

precede the current observation, as a proxy for the baseline hazard rate. Implementing this type of 

time dummies as the baseline hazard rate indicates that an individual hazard rate is represented by 

each firm's survival period. 

Nam (2008) argued that employing indirect measure of baseline like time dummies would be not 

effective proxy in obtaining economy wide condition. This is because the firm’s survival time 

does not necessarily carry macro-dependencies of firm. Alternatively, some studies proposed 

employing macroeconomic features like changes in interest rates (Hillegeiste et al., 2001) and the 

volatility of foreign exchange rate (Name et al., 2008) as the direct measure of baseline hazard 

rate.   

For estimating the probability of failure using the Cox’s proportional survival function, a scaled 

baseline hazard rate is used which is scaled up, or down based on the firms' risk features. When 

time-varying features are employed in the Cox model, estimating the baseline hazard rate has been 
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challenging (Chen et al., 2005; Kim and Partington, 2014). As a result, making forecasts has also 

been infeasible with time-varying features in past financial failure studies. For the first time, Chen 

et al. (2005) incorporated baseline hazard using Anderson (1992)’s method into a Cox’ 

proportional model to predict the dynamic change of cumulative survival attributed to liver cancer 

in respect of time-varying biochemical covariates. The integrated baseline survival function can 

be estimated as follows; 

 
𝐻̂0(𝑡) = ∑

𝐵𝑖

∑ 𝑒𝑥𝑝 (𝛽́.̂ 𝑥𝑗(𝑇̃𝑖))𝑗∈𝑅(𝑇̃𝑖)𝑇̃𝑖≤𝑡

 
 

(28) 

Where 𝐵𝑖 is the binary variable for whether the company 𝑖 experiences the event, i.e. 0 for 

survivors and 1 for failure or distress; 𝑇̃𝑖 is the event time for the 𝑖th company; 𝑥𝑗(𝑇̃𝑖) is the value 

of the 𝑗th covariate at the event time of the 𝑖th company.  

 

4.5. Performance evaluation of distress prediction models 

In this section, firstly, we explain the criteria and measures employed to evaluate the performance 

of models (see section 4.5.1). Then, we exercise the mono-criteria evaluation of prediction models 

(see section 4.5.2). Finally, we implement our suggested multi-criteria evaluation approach to 

evaluate the performance of models (see section 4.5.3).  

4.5.1. Criteria and measures for performance evaluation 

In this paper, we have focused on the most frequently used criteria and their measures for 

performance evaluation of prediction models. The first criterion is the discriminatory power, which 

is defined as the power of a prediction model to discriminate between the healthy firms and the 

unhealthy firms. In our comparative evaluation, we use H-Measure, Kolmogorov Smirnov (KS), 

Area under Receivable Operating Characterise (AUROC), Gini index and Information Value (IV) 

to measure this criterion. The second criterion is the calibration accuracy, which is defined as the 

quality of estimation of the probability of failure (or distress). We use Brier Score (BS) to measure 

this criterion. The third criterion is the information content which is defined as the extent to which 
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the outcome of a prediction model (e.g. score or probability of failure) carries enough information 

for failure (or distress) prediction. We employ log-likelihood statistic (LL) and pseudo-coefficient 

of determination (pseudo-R2) to measure this criterion.  The last criterion is the correctness of 

categorical prediction, which is defined as the capability of the failure (or distress) model to 

correctly classify firms into healthy or non-healthy categories considering the optimal cut-off 

point. We use Type I errors (T1), Type II errors (T2), misclassification rate (MR), sensitivity (Sen), 

specificity (Spe), and overall correct classification (OCC) to measure this criterion. – See 

Appendix C of Mousavi et al. (2014) for descriptions of these measures. 

 

4.5.2. Mono criteria performance evaluation of distress prediction models 

In order to answer the first question about the effect of information on the performance of distress 

models, we employ different combinations of information such as financial accounting (FA), 

financial accounting and market variables (FAMV), financial accounting and macroeconomic 

indicators (FAMI), financial accounting, market variables and macroeconomic indicators 

(FAMVMI), market variables (MV), and market variables and macroeconomic indicators (MVMI) 

to fed models.  

When the availability of information is limited to accounting information (e.g., situations where 

firms under evaluation are not listed on stock exchanges and macroeconomic information is not 

available or not reliable), our empirical results demonstrate that accounting information on its own 

is capable of predicting distressed firms. As one would expect, additional information enhances 

the ability of all models, whether static or dynamic, to discriminate between firms. In fact, 

regardless of the performance criterion chosen (i.e., Discriminatory Power, Correctness of 

Categorical Prediction, Calibration Accuracy) and its measures, empirical results demonstrate that 

most static and dynamic models perform better when fed with information beyond accounting ones 

– see, for example, Figure 5, and this enhancement in performance is statistically significant as 

demonstrated by a substantially large number of one-tailed t-tests of hypotheses involving all 

combinations of 12 modelling frameworks, 9 categories of information, and 15 measures of 3 

performance criteria, where the Null hypothesis 𝐻0 is: Average performance of modelling 
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framework 𝑋 fed with information category 𝑌 ≤  Average performance of modelling framework 

𝑋′ fed with information category 𝑌′ – see Table 3 for an illustrative example of the typical outcome 

of these hypothesis tests. In addition, market information (e.g., (log) stock prices, (log) excess 

returns, volatility of stock returns / unsystematic risk, firm size as proxied by log (number of 

outstanding shares × year end share price / total market value), its market value, or market value 

of assets to total liabilities) on its own informs models better than accounting information on its 

own. However, market and macroeconomic information combined slightly enhance the 

performance of distress prediction models whether static or dynamic. Furthermore, empirical 

results suggest that the choice of how a specific piece of information is modelled affects its 

relevance in adding value to a prediction model. In fact, for example, with respect to the market 

information category, log(price) is a better modelling choice compared to the price itself and 

excess return is generally better than log(price). 
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Table 3: The p-value of t-tests to compare the average performance of models using ROC as measure of discriminatory power 

This table presents the p-value of t-tests to compare the performance of models using ROC. The Null hypothesis (𝐻0) is: Average performance of modelling framework 𝑋 fed with 

information category 𝑌 ≤  Average performance of modelling framework 𝑋′ fed with information category 𝑌′. 
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DDWFSB_FA   0.007 0.973 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

DDWFSB_FAL1MI     1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

DDWFSB_FAMI       0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

DDWFSB_FAMV         0.145 0.000 0.000 0.000 0.000 0.000 0.000 0.915 0.885 0.000 0.000 0.000 0.000 0.000 

DDWFSB_FAMVL1MI           0.000 0.000 0.000 0.000 0.000 0.000 0.942 0.929 0.000 0.000 0.000 0.000 0.000 

DDWFSB_FAMVMI             0.001 0.000 0.711 0.004 0.002 1.000 1.000 0.667 0.009 0.006 0.627 0.001 

DDWFSB_MV               0.034 0.999 0.978 0.690 1.000 1.000 0.997 0.845 0.663 0.999 0.386 

DDWFSB_MVL1MI                 0.999 0.997 0.978 1.000 1.000 0.999 0.946 0.857 1.000 0.780 

DDWFSB_MVMI                   0.001 0.001 1.000 1.000 0.465 0.007 0.005 0.344 0.001 

DDWTDB_1/ln(age)_FA                     0.036 1.000 1.000 0.995 0.534 0.323 0.998 0.032 

DDWTDB_1/ln(age)_FAL1MI                       1.000 1.000 0.997 0.795 0.583 0.999 0.233 

DDWTDB_1/ln(age)_FAMI                         0.359 0.000 0.000 0.000 0.000 0.000 

DDWTDB_1/ln(age)_FAMV                           0.000 0.000 0.000 0.000 0.000 

DDWTDB_1/ln(age)_FAMVL1MI                             0.002 0.002 0.422 0.001 

DDWTDB_1/ln(age)_FAMVMI                               0.071 0.994 0.066 

DDWTDB_1/ln(age)_MV                                 0.996 0.233 

DDWTDB_1/ln(age)_MVL1MI                                   0.000 

DDWTDB_1/ln(age)_MVMI                                     
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Figure 5: Measures of Discriminatory Power (ROC, H, Gini, KS, IV) for New Models designed in 

Different Static and Dynamic Frameworks and Fed with 3-Year Information 

 

In regards to the second question, which considers the out-of-sample performance of dynamic 

distress prediction models compare to the out-of-sample performance of static ones with respect 

to sample type and sample period length, empirical evidence suggests that the out-of-sample 

implementation of static models within a rolling horizon framework overcomes the a priori 

limitation of their static nature. In fact, under several combinations of categories of information 

(e.g., FAMV, FAMVMI, MV), the performance of static models is comparable to the performance 

of the dynamic ones across all measures of all criteria. This finding suggests that static models are 

not to be discarded and explains why static models are popular amongst practitioners – see, for 

example, Figure 7. In addition, the performance of static models is consistent across different 

combinations of information categories for all measures of all criteria except for information value 

(IV) and Type I error – see, for example, Figure 5 and Figure 9.  
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Figure 6: Measures of Discriminatory Power (ROC, H, Gini, KS, IV) of New Static Models 

Designed in Different Frameworks 

 

Considering static models and with respect to T1 error, as a measure of correctness of categorical 

prediction criterion, MDA seems to deliver a higher performance whereas PA is the worst 

performer. Also, PA performance suggests that this modelling framework is good at properly 

classifying healthy firms (i.e., it has the smallest Type II error), but relatively speaking, it poorly 

classifies the distressed ones (i.e., it has the largest Type I error) – see, for example, Figure 9. 

Figure 7: ROC of New Models Designed in Different Static and Dynamic Frameworks 

Fed with 3-year Information 
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With respect to ROC, H, Gini and KS, as measures of discriminatory power, LA and PA 

outperform other static models. However, considering IV as measure of discriminatory power, 

LPA seems to deliver a higher performance whereas MDA is the worst performer – see, for 

example, Figure 6. However, when static modelling frameworks are fed with both financial 

accounting and macroeconomic information, there is a clear difference in discriminatory power 

which suggests that macroeconomic information enhances the performance of LA and PA for 

discriminatory power measures. 

Figure 8: Measures of Correctness of Categorical Prediction of New Static Models Designed  

in Different Frameworks 

 

With respect to Pseudo-R2 and Log Likelihood, as measures of information content, LA and PA 

outperform other static models when fed with accounting and macroeconomic information – see, 

for example, Figure 10; however, LPA stands out as the best model when market information is 

used. On the other hand, with respect to measures of quality of fit, such as Brier score, LA 

outperforms other static models when fed with accounting and macroeconomic information - see, 

for example,  

Much like static models, empirical results suggest that dynamic models perform better when fed 

with information beyond accounting one; in fact, the performance of dynamic models across most 

measures of the three criteria under consideration is not only further enhanced when market 

information is taken on board – see, for example, Figure 5, but it is consistent across all 
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combinations of categories of information that include market variables – see, for example, Figure 

5. 

With respect to OCC, T2 and MR, as measures of correctness of categorical prediction, 

DDWTDB_1/ln(age) and DDWTDB_ln(age) [baseline is ignored or equal to 1, and 1/ln(age) and 

ln(age) are explanatory variables] are the best and second best performers, followed by DIWTIB-

1/ln(age) and DIWTIB-ln(age) (1/ln(age) and ln(age) are baselines or intercepts) as average 

performers, and DDWFSB and DDWTDB-LPE being the worst ones – see, for example, Figure 

9. Note however that, with respect to T1, DDWTDB-LPE is the best performer or amongst the 

best performers regardless of the information categories taken into account. On the other hand, 

DDWFSB and DDWTDB-VEX are, as expected, being the worst for any combination of 

information categories that includes market information; however, when market information is not 

considered, DDWFSB’s performance improves while DDWTDB-VEX’s performance remains 

weak – see Figure 9. 

With respect to ROC, H, Gini and KS, as measures of discriminatory power, DDWTDB_1/ln(age) 

is the best performer amongst dynamic models, whereas DDWTDB-ln(age) and DDWFSB are the 

worst performers – see  Figure 5. Once again dynamic models perform better when fed with 

information beyond accounting ones. 

As to information content as measured by Pseudo-R2 and Log likelihood, DIWTIB_ln(age) (resp. 

DDWFSB) outperform (underperform) other dynamic models – see, for example, Figure 10.  

With respect to the quality of fit, under its BS measure, the performance of DIWTIB_1/ln(age) 

(resp. DIWTIB_ln(age)) models fed with market variables outperform (resp. underperform) other 

dynamic models - see, for example, To conclude our comparative analysis of static and dynamic 

models, we would like to stress out that, in general, static modelling frameworks are as good 

performers as dynamic ones when implemented under a dynamic scheme. This conclusion 

suggests that the design of dynamic models along with the information they are fed with need more 

attention from the academic community for this category of models to perform to the standard it 

is expected from dynamic frameworks, on one hand, and to become a real contender for 

practitioners, on one hand.  
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One of the research questions is about the effect of the Length of Training Sample on the 

performance of models. Under the discriminatory power criterion, a comparison of models under 

different lengths of the training sample revealed that their empirical performance when market 

information is taken account of is not significantly affected, except for DDWFSB. In fact, the 

performance of DDWFSB deteriorates with a longer time window of the training sample – see  

Figure 12. However, when market information is not considered, the performance of models 

depends to varying extents on the length of the training sample and thus their historical information 

needs might become lower or higher; e.g., dynamic models fed with 5-year training sample tend 

to outperform 3-year and 10-year trained models.  

 

Figure 11.  

However, feeding dynamic frameworks with information beyond accounting one enhances their 

calibration accuracy, which suggests that macroeconomic and market information improve the 

performance of models.  

 

 

Figure 9: Correctness of Categorical Prediction of New Models Designed in Different Static  

and Dynamic Frameworks 
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With respect to both static and dynamic models, under the correctness of categorical prediction 

criterion, the performance profiles of both static and dynamic models are consistent across 

different combinations of information categories, however they deliver different performances on 

different performance measures with the exception of T2 and MR for which both static and 

dynamic models deliver the same average performance figures – see Figure 9. This latter empirical 

finding is explained by the fact that MR is a weighted combination of T1 and T2 errors and healthy 

firms count for the majority of firms in our sample. However, although T1 and OCC are consistent 

in the way they drive performance, they deliver different figures as expected. One notable 

behaviour in performance is that of PA being the best performer amongst all static and dynamic 

models with respect to T2 error, MR and OCC; whereas PA’s performance is consistently the 

worst under T1 errors, on one hand, and the continuous-time hazard model with time-varying 

baseline based on historical survival period (DDWFSB) is the worst performer across all measures, 

on the other hand.  

Under the discriminatory power criterion, the performance profile of both static and dynamic 

models are also consistent across different combinations of information categories – see Figure 5. 

Furthermore, their performance is similar for all measures of discriminatory power except for 

information value (IV). Generally, DDWTDB_1/ln(age) and LA models are the best performers 

once the models are fed with market information.  

Figure 10: Log likelihood and Pseudo-R2 of New Dynamic and Static Models Fed  

with Different Type of Information 
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As to the calibration accuracy criterion, under measures of both information content and quality 

of fir, the dynamic model DIWTIB_ln(age) fed with FAMVMI has the highest Pseudo-R2, the 

lowest Log Likelihood, and the lowest Brier score; therefore, it outperforms all other models 

whether static or dynamic – see for Figure 10 and Error! Not a valid bookmark self-reference. 

for example; however, market information boosts LPA models performance to become the best 

amongst static models. 

To conclude our comparative analysis of static and dynamic models, we would like to stress out 

that, in general, static modelling frameworks are as good performers as dynamic ones when 

implemented under a dynamic scheme. This conclusion suggests that the design of dynamic 

models along with the information they are fed with need more attention from the academic 

community for this category of models to perform to the standard it is expected from dynamic 

frameworks, on one hand, and to become a real contender for practitioners, on one hand.  

One of the research questions is about the effect of the Length of Training Sample on the 

performance of models. Under the discriminatory power criterion, a comparison of models under 

different lengths of the training sample revealed that their empirical performance when market 

information is taken account of is not significantly affected, except for DDWFSB. In fact, the 

performance of DDWFSB deteriorates with a longer time window of the training sample – see  
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Figure 12. However, when market information is not considered, the performance of models 

depends to varying extents on the length of the training sample and thus their historical information 

needs might become lower or higher; e.g., dynamic models fed with 5-year training sample tend 

to outperform 3-year and 10-year trained models.  

 

Figure 11: Brier Score of new dynamic and static models fed with different type of information 

 

 

Figure 12: ROC of New Models Fed with Different Length and Type of Information 
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Under the correctness of categorical prediction criterion, a longer time window of the training 

sample improves the performance of both static and dynamic models under T1 – see Figure 13. 

However, under T2, MR and OCC, a shorter time window of the training sample improves the 

performance of both static and dynamic models – see, Figure 14. In sum, under T1, both static and 

dynamic modelling frameworks require more historical information than what is required under 

T2, MR and OCC for a good performance.  

Figure 13: Type I Error of New Models Fed with Different Length and Type of Information 

 

 

Figure 14: Type II Error of New Models Fed with Different Length and Type of Information 
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Under the information content criterion and its measures; namely, Pseudo-R2 and Log likelihood, 

most models fed with 5-year training sample outperform other models when market information 

is ignored. However, when market variables are taken into account, a shorter time window of the 

training sample improves the performance of both static and dynamic models – see, for example, 

Figure 15.  

Figure 15: Pseudo-R2 of New Models Fed with Different Length and Type of Information 

 

Under Brier score, as a calibration accuracy measure, models fed with 5-year training sample 

perform better when market information is ignored. However, when static and dynamic models 

are fed with market information, a shorter time window of the training sample improves their 

performance – see As suggested by one-dimensional ranking of distress prediction models, taking 

into account different performance criteria and measures, there are considerable conflicts and ties 

in ranking of models. Therefore, taking into account multiple criteria, one cannot make an 

informed decision as to which model performs best. Although, we insist that one-dimensional 

rankings are not to be discarded, we would like to propose a dynamic multi-criteria assessment, 

which provides a single ranking under multiple criteria.  
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Figure 16. In sum, although accounting, market, and macroeconomic information are correlated 

to varying degrees over time, market information proved to be the most informative prediction-

wise.  

As suggested by one-dimensional ranking of distress prediction models, taking into account 

different performance criteria and measures, there are considerable conflicts and ties in ranking of 

models. Therefore, taking into account multiple criteria, one cannot make an informed decision as 

to which model performs best. Although, we insist that one-dimensional rankings are not to be 

discarded, we would like to propose a dynamic multi-criteria assessment, which provides a single 

ranking under multiple criteria.  
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Figure 16:  Brier Score of New Models Fed with Different Length and Type of Information 

 

 

4.5.3. Multi criteria performance evaluation of distress prediction models 

In this study we considered 12 forecasting frameworks (i.e., MDA, LPA, LA, PA, DDWFSB, 

DDWTDB_ln(age), DDWTDB_1/ln(age), DDWTDB_LPE, DDWTDB_VEX, DDWOTIB, 

DDWTIB_ln(age), and DDWTIB_1/ln(age)) which are fed with six groups of information (i.e., 

FA, FAMI, FAMV, FAMVMI, MV, and MVMI) using three different training periods (i.e., 3, 5 

and 10-year information). Due to the superiority of models fed with FAMVMI in mono-criteria 

rankings and also to save space, we only present the multi-criteria performance evaluation of 

models fed with FAMVMI. Note however that the same findings are reached under other 

combinations of information categories.  

Setup 1 - Inputs: T1, BS and outputs: Pseudo-R2, ROC 

In the first round of multi-criteria assessment using Malmquist DEA, we used T1 error (as a 

measure of correctness of categorical prediction) and Brier score (as a measure of quality of fit) as 

inputs, and Pseudo-R2 (as a measure of information content) and ROC (as a measure of 

discriminatory power) as outputs. 
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Table 4, Table 5 and Table 6 provide the rankings of models based on the estimated efficiency 

scores during period 2000 to 2014. For easier comparison, we provide a point which is calculated 

based on the ranking of models over 15-year period.   

With respect to the performance of models fed with 3-year training sample, DDWTDB-1/ln(age) 

outperforms other models, following by DDWTDB-ln(age) and DIWTIB-ln(age) which are the 

second and third best performers. Note that, although multi-criteria ranking of models suggest that 

dynamic models are superior to the static ones, LA performs better than the other static models 

and some dynamic ones.  

Considering models fed with either 5 or 10-year training samples, DDWTDB-1/ln(age), DDWFSB 

and DDWTDB-ln(age) are the best performers. Furthermore, the static model LA outperforms the 

remaining static models. As the results of mono-criterion ranking suggest increasing the length of 

the training sample improves the performance of DDWFSB under T1 error. In consistent to mono-

criterion, the results of multi-criteria ranking suggest that increasing the period of training sample 

improves the performance of DDWFSB. 

Comparing all models fed with 3, 5 and 10-year training sample, dynamic models perform much 

better than static models. DDWFSB fed with 5-year information has the best performance over 

15-year period, following by other duration dependent models which use ln(age) or 1/ln(age) as 

baseline rate_ see Table 10 .  

 

Setup 2 - Inputs: T2, BS and outputs: Pseudo-R2, ROC 

In the second round of multi-criteria assessment using Malmquist, we used Type II error (as 

measure of correctness of categorical prediction) and Brier score (as measure of quality of fit) as 

inputs, and R2 (as measure of information content) and ROC (as measure of discriminatory power) 

as outputs.  

Table 7, Table 8 and Table 9 represent the ranking of models in each year based on the estimated 

efficiency scores using Malmquist DEA.  Conversely to the last round of multi-criteria assessment 

where the static models underperform dynamic ones, the second round of assessment indicates that 
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PA outperforms other models. With respect to all length of training samples, the PA model 

outperforms other models. However, the dynamic model of DDWTDB_1/ln(age) is ranked second 

followed by DDWTDB_ln(age) with respect to all length of training samples.  

With respect to all models fed with FAMVMI, the static model of PA fed with 5,3 and 10-year 

information outperform other models over 15-year period. DDWTDB_1/ln(age) fed with 3,5-year 

training sample is the second best performer, see Table 11. 
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Table 4: The first round of multi-criteria ranking of models fed with 3-year FAMVMI information 

 

 

 

 

 

 

Table 5: The first round of multi-criteria ranking of models fed with 5-year FAMVMI information 

Framework 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Rank 1 Rank 2 Rank 3 Point 

DDWFSB 2 2 5 5 4 3 1 1 8 1 7 1 1 1 1 7 2 1 137 

DDWTDB-1/ln(age) 4 1 2 1 2 1 2 3 1 2 2 6 2 2 3 4 7 2 146 

DDWTDB-ln(age) 5 7 3 2 3 4 4 4 2 3 4 9 3 3 5 0 2 5 119 

DDWTDB-LPE 1 4 7 9 1 7 8 7 6 6 1 3 8 5 4 3 0 1 103 

DDWTDB-VEX 7 9 4 6 5 5 6 5 7 5 6 4 6 9 6 0 0 0 90 

DIWOTIB 8 3 6 4 8 6 7 8 5 8 5 5 7 6 7 0 0 1 87 

DIWTIB-1/ln(age) 10 6 9 7 10 9 10 9 9 9 9 8 9 8 9 0 0 0 49 

DIWTIB-ln(age) 3 5 1 3 6 2 3 2 4 4 10 10 4 10 10 1 2 3 103 

LA 6 8 8 8 7 8 5 6 3 7 3 2 5 4 2 0 2 2 98 

LPA 12 10 11 11 11 11 11 11 12 11 11 11 11 11 11 0 0 0 14 

MDA 11 12 12 12 12 12 12 12 11 12 12 12 12 12 12 0 0 0 2 

PA 9 11 10 10 9 10 9 10 10 10 8 7 10 7 8 0 0 0 42 

 

Table 6: The first round of multi -criteria ranking of models fed with 10-year FAMVMI information 

Framework 2000    2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Rank 

1 

Rank 

2 

Rank 

3 

Point 

DDWFSB 1 12 9 1 4 3 3 9 1 1 1 1 1 1 1 9 0 2 131 

DDWTDB-1/ln(age) 2 1 3 3 1 1 2 2 3 2 6 7 2 2 3 3 6 4 140 

DDWTDB-ln(age) 4 4 4 6 3 4 4 4 5 3 7 9 4 3 4 0 0 3 112 

DDWTDB-LPE 6 9 8 4 2 5 6 6 4 4 2 5 8 4 2 0 3 0 105 

DDWTDB-VEX 7 6 2 5 5 6 8 1 2 5 9 4 7 7 6 1 2 0 100 

DIWOTIB 8 7 7 8 7 7 7 7 8 7 5 2 6 5 5 0 1 0 84 

DIWTIB-1/ln(age) 10 5 5 9 10 9 10 8 9 9 4 6 9 9 8 0 0 0 60 

DIWTIB-ln(age) 3 2 1 2 6 2 1 3 7 6 10 11 3 8 11 2 3 3 104 

LA 5 8 6 7 9 8 5 5 6 8 3 3 5 6 7 0 0 2 89 

LPA 12 3 11 11 11 11 12 11 11 11 11 10 11 11 10 0 0 1 23 

MDA 11 11 12 12 12 12 11 12 12 12 12 12 12 12 12 0 0 0 3 

PA 9 10 10 10 8 10 9 10 10 10 8 8 10 10 9 0 0 0 39 

 

Framework 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Rank 

1 

Rank 

2 

Rank 

3 

Point 

DDWFSB 3 9 3 11 1 4 4 12 10 6 12 2 1 10 3 2 1 3 89 

DDWTDB-1/ln(age) 1 1 5 2 3 1 2 1 1 2 3 1 2 1 5 7 4 2 149 

DDWTDB-ln(age) 4 2 6 4 4 2 3 3 3 3 4 5 4 2 7 0 3 4 124 

DDWTDB-LPE 8 3 9 9 2 8 9 5 5 1 1 3 7 4 1 3 1 2 105 

DDWTDB-VEX 6 5 1 3 8 5 1 7 4 5 2 6 3 6 8 2 1 2 110 

DIWOTIB 5 6 8 6 9 9 8 6 6 8 5 4 5 3 6 0 0 1 86 

DIWTIB-1/ln(age) 9 8 10 7 12 10 10 9 8 9 7 7 8 7 4 0 0 0 55 

DIWTIB-ln(age) 2 7 2 1 6 3 5 2 2 4 6 8 6 5 10 1 4 1 111 

LA 7 4 4 5 5 6 6 4 7 7 8 9 9 8 2 0 1 0 89 

LPA 12 11 11 10 10 11 12 10 11 11 10 11 11 11 11 0 0 0 17 

MDA 11 12 12 12 11 12 11 11 12 12 11 12 12 12 12 0 0 0 5 

PA 10 10 7 8 7 7 7 8 9 10 9 10 10 9 9 0 0 0 50 
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Table 7: The second round of multi-criteria ranking of models fed with 3-year FAMVMI information 

  Framework 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Rank 1 Rank 2 Rank 3 Point 

DDWFSB 3 10 8 3 1 5 5 1 10 10 2 8 10 11 10 2 1 2 83 

DDWTDB-1/ln(age) 4 3 3 5 4 1 1 3 2 2 3 3 3 3 3 2 2 8 137 

DDWTDB-ln(age) 6 7 5 4 5 3 2 4 3 3 5 6 5 5 5 0 1 3 112 

DDWTDB-LPE 7 9 6 1 11 9 8 8 7 9 10 5 4 8 8 1 0 0 70 

DDWTDB-VEX 5 5 9 6 10 8 6 7 8 6 9 2 2 2 2 0 4 0 93 

DIWOTIB 8 6 7 8 9 7 9 9 6 5 4 4 7 7 6 0 0 0 78 

DIWTIB-1/ln(age) 10 8 10 10 12 10 10 10 9 7 6 7 9 6 7 0 0 0 49 

DIWTIB-ln(age) 2 2 2 7 6 4 4 5 4 4 7 9 6 9 9 0 3 0 100 

LA 9 4 4 9 3 6 7 6 5 8 8 10 8 4 4 0 0 1 85 

PA 1 1 1 2 2 2 3 2 1 1 1 1 1 1 1 10 4 1 159 

LPA 12 11 11 11 8 11 12 11 11 11 11 11 11 10 11 0 0 0 17 

MDA 11 12 12 12 7 12 11 12 12 12 12 12 12 12 12 0 0 0 7 

 

Table 8: The second round of multi-criteria ranking of models fed with 5-year FAMVMI information 

Framework 2000   2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Rank 1 Rank 2 Rank 3 Point 

DDWFSB 10 10 10 12 12 12 2 12 12 10 12 10 9 11 10 0 1 0 26 

DDWTDB-1/ln(age) 3 3 3 3 2 2 4 2 2 2 3 6 3 3 2 0 6 7 137 

DDWTDB-ln(age) 4 4 4 6 3 3 5 4 3 3 6 8 4 4 7 0 0 4 112 

DDWTDB-LPE 9 8 6 2 11 5 6 6 5 8 10 3 5 5 6 0 1 1 85 

DDWTDB-VEX 6 6 9 4 6 7 8 8 6 7 4 2 2 2 4 0 3 0 99 

DIWOTIB 7 7 7 9 7 8 9 7 8 6 5 5 7 6 5 0 0 0 77 

DIWTIB-1/ln(age) 8 9 8 8 10 9 10 9 9 9 7 7 10 8 8 0 0 0 51 

DIWTIB-ln(age) 2 2 2 5 5 4 3 3 4 4 8 9 8 10 11 0 3 2 100 

LA 5 5 5 7 4 6 7 5 7 5 2 4 6 7 3 0 1 1 102 

PA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 0 165 

LPA 12 11 11 10 8 11 11 10 10 11 9 11 11 9 9 0 0 0 26 

MDA 11 12 12 11 9 10 12 11 11 12 11 12 12 12 12 0 0 0 10 

 

Table 9: The second round of multi-criteria ranking of models fed with 10-year FAMVMI information 

Framework 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Rank 1 Rank 2  Rank 3 Point 

DDWFSB 11 12 12 12 12 11 9 12 12 12 12 12 12 12 12 0 0 0 5 

DDWTDB-1/ln(age) 2 2 3 2 2 3 3 2 2 2 2 6 2 2 2 0 11 3 143 

DDWTDB-ln(age) 4 5 4 4 3 4 4 4 4 3 4 8 3 4 4 0 0 3 118 

DDWTDB-LPE 8 8 5 9 11 5 6 7 7 8 7 3 4 6 7 0 0 1 79 

DDWTDB-VEX 6 7 8 5 5 7 7 8 8 7 9 2 6 3 3 0 1 2 89 

DIWOTIB 7 9 6 7 6 6 8 6 6 6 3 4 8 7 5 0 0 1 86 

DIWTIB-1/ln(age) 9 10 7 8 8 9 10 9 9 9 6 7 9 9 8 0 0 0 53 

DIWTIB-ln(age) 3 3 2 3 4 2 2 3 3 4 8 9 5 8 9 0 3 5 112 

LA 5 6 9 6 7 8 5 5 5 5 5 5 7 5 6 0 0 0 91 

PA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 0 165 

LPA 12 4 10 10 9 10 12 10 10 10 10 10 10 10 10 0 0 0 33 

MDA 10 11 11 11 10 12 11 11 11 11 11 11 11 11 11 0 0 0 16 
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5. Conclusion 

Prediction of corporate distress is crucial for many decision makers in finance and investment. Although 

a large number of models have been designed to predict bankruptcy and distress, the relative performance 

evaluation of competing distress models remains an exercise that is one-dimensional in nature, which 

results in conflicting rankings of models from one performance criterion to another.  In this study, we 

proposed an orientation-free super-efficiency Malmquist DEA, which provides a single ranking, based 

on multiple performance criteria. In addition, we exercised a comprehensive comparative analysis of the 

most famous static and dynamic distress prediction models.  For this, we used several measures under 

four commonly employed criteria (i.e., the discriminatory power, the information content, the calibration 

accuracy, and the correctness of categorical prediction) in the literature.  Furthermore, we addressed the 

following important questions: What category of information or combination of categories of information 

enhances the predictive ability of models best? and How the out-of-sample performance of dynamic 

distress prediction models compare to the out-of-sample performance of static ones with respect to 

sample type and sample period length?  

Our main findings could be classified as follows. Firstly, the proposed multi-criteria dynamic framework 

provides a useful tool in evaluating the relative performance of distress prediction models over time. 

Secondly, conversely to the one-dimensional ranking, the multidimensional ranking of models provides 

more consistent results. However, in case of a significant inconsistency between rankings of a model 

using Type I and Type II errors (i.e. PA model), multi-criteria rankings of a model using each of these 

two measures would also present inconsistency. Third, empirical results suggest that dynamic models, 

specifically DDWTDB_1/ln(age) and DDEWTDB_ln(age) are always amongst the best distress 

prediction models and show consistency in multi-criteria ranking using different combinations of 

measures. Forth, models fed with shorter training sample period (i.e. 3-year training period) length are 

superior in performance. Fifth, most modelling frameworks show improvement in performance by taking 

account of features beyond accounting-based information (i.e. FAMVMI and FAMV).  
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Table 10: The first round of multi-criteria ranking of models fed with FAMVMI information 

Framework 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 
Total 

rank 

DDWFSB_05 5 1 14 14 13 9 4 1 17 1 19 1 2 12 1 1 

DDWTDB_1/ln(age)_03 1 15 25 17 14 1 2 3 7 4 11 3 4 2 7 2 

DDWFSB_10 9 36 13 1 7 8 14 24 1 2 2 2 1 1 2 3 

DDWTDB_1/ln(age)_05 7 1 6 9 8 1 12 7 2 7 10 20 11 20 13 4 

DDWTDB_1/ln(age)_10 15 1 4 3 1 5 13 6 13 8 9 14 12 10 23 5 

DDWTDB_ln(age)_03 8 17 26 21 18 4 3 9 10 5 15 11 6 3 9 6 

DDWTDB_ln(age)_10 16 10 5 6 5 10 16 11 16 12 12 21 16 13 24 7 

DDWTDB_ln(age)_05 10 12 7 10 11 11 19 8 3 9 14 27 14 23 15 7 

DIWTIB_ln(age)_03 1 25 21 16 25 6 6 4 8 6 20 25 8 6 19 9 

DDWTDB_LPE_03 14 19 29 29 6 23 11 17 21 3 3 5 9 5 3 10 

DDWTDB_VEX_03 12 23 20 18 28 13 1 22 15 11 4 13 5 7 10 11 

DDWTDB_LPE_10 20 20 12 4 1 16 20 16 14 13 5 9 26 15 22 12 

DIWTIB_ln(age)_05 6 8 3 12 20 1 17 5 5 10 26 31 18 31 26 13 

DIWTIB_ln(age)_10 16 1 1 2 10 7 9 10 20 17 28 29 15 21 34 14 

DDWTDB_VEX_10 21 13 2 5 9 18 23 2 12 15 25 8 24 19 27 15 

DDWTDB_LPE_05 1 7 16 24 4 17 30 18 9 16 1 16 25 26 14 16 

LA_10 19 18 10 7 16 25 18 15 19 19 6 7 19 17 28 17 

DIWOTIB_10 22 16 11 8 12 20 21 21 22 18 8 6 21 16 25 18 

DDWFSB_03 1 27 22 34 1 12 5 36 33 20 36 4 3 14 5 19 

LA_05 23 14 17 20 21 21 22 14 4 21 13 15 20 24 12 20 

DIWOTIB_03 11 24 28 26 29 24 10 19 24 23 17 10 7 4 8 21 

DDWTDB_VEX_05 27 21 8 15 17 14 28 12 11 14 18 17 22 30 16 22 

LA_03 13 22 24 23 23 19 7 13 26 22 27 28 13 9 4 23 

DIWOTIB_05 28 6 15 13 22 15 29 20 6 24 16 18 23 27 17 24 

DIWTIB_1/ln(age)_10 26 11 9 11 19 28 27 23 23 25 7 12 27 22 29 25 

DIWTIB_1/ln(age)_03 18 26 30 27 36 30 15 28 29 27 21 23 10 8 6 26 

PA_03 24 31 27 28 26 22 8 25 31 32 31 30 17 11 11 27 

DIWTIB_1/ln(age)_05 30 9 19 19 30 26 32 27 18 26 24 26 29 29 20 28 

PA_10 25 30 18 22 15 29 24 26 27 28 22 19 28 25 30 29 

PA_05 29 29 23 25 24 27 31 29 25 31 23 22 30 28 18 30 

LPA_10 36 5 31 30 27 34 35 30 32 29 30 24 35 32 33 31 

LPA_03 33 32 33 33 34 31 26 34 35 35 34 35 31 18 21 32 

LPA_05 34 28 35 32 31 33 33 32 30 33 29 33 32 34 32 33 

MDA_10 35 34 32 31 32 35 34 31 34 30 32 32 36 35 35 34 

MDA_03 32 33 34 35 35 32 25 35 36 36 35 36 33 33 31 35 

MDA_05 31 35 36 36 33 36 36 33 28 34 33 34 34 36 36 36 
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Table 11: The second round of multi-criteria ranking of models fed with FAMVMI information 

Framework 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 
Total  

rank 

PA_05 6 1 3 4 2 1 4 3 3 2 1 1 3 2 1 1 

PA_03 1 7 1 2 4 4 5 2 1 1 3 3 1 1 2 2 

PA_10 1 1 2 3 3 5 3 4 2 3 2 2 2 3 3 3 

DDWTDB_1/ln(age)_03 5 16 21 16 13 1 1 6 4 4 5 6 5 6 5 4 

DDWTDB_1/ln(age)_05 15 10 8 9 7 1 16 5 5 7 8 20 13 15 9 5 

DDWTDB_ln(age)_03 9 24 23 13 17 7 2 8 6 5 10 13 7 8 7 6 

DDWTDB_1/ln(age)_10 11 1 6 7 5 12 13 11 10 8 13 18 14 13 19 7 

DIWTIB_ln(age)_03 1 8 20 25 20 8 6 10 7 6 19 24 8 12 17 8 

DDWTDB_ln(age)_05 18 13 10 14 9 6 18 9 8 10 12 25 16 18 15 9 

DDWTDB_ln(age)_10 13 9 7 11 6 13 17 13 12 11 15 23 15 16 22 10 

DIWTIB_ln(age)_10 13 1 5 8 8 10 10 12 11 12 23 27 20 25 31 11 

DIWTIB_ln(age)_05 8 1 4 12 12 9 12 7 9 13 25 28 23 31 30 12 

DDWTDB_VEX_03 7 22 27 20 31 18 8 16 25 14 24 4 4 5 4 13 

DDWFSB_03 1 29 26 5 1 11 7 1 32 28 4 22 18 28 21 14 

DIWOTIB_03 12 23 25 26 29 17 15 20 23 9 6 7 9 10 8 15 

DDWTDB_VEX_05 24 18 19 10 15 20 29 27 14 21 9 5 12 4 12 15 

LA_03 17 19 22 27 11 14 11 14 21 17 21 26 10 7 6 17 

LA_05 22 17 12 18 10 16 25 21 15 15 7 11 21 24 11 18 

DDWTDB_LPE_03 10 28 24 1 33 21 14 18 24 25 27 12 6 11 16 19 

LA_10 16 11 18 17 19 25 19 15 17 18 18 16 26 17 24 20 

DIWOTIB_10 21 15 11 19 16 22 23 17 18 20 14 14 27 21 23 21 

DDWTDB_LPE_05 28 21 13 6 32 15 24 22 13 22 28 9 17 19 14 22 

DDWTDB_VEX_10 20 12 17 15 14 24 22 25 22 23 29 8 24 14 20 23 

DDWTDB_LPE_10 23 14 9 23 28 19 20 19 20 24 22 10 19 20 25 24 

DIWOTIB_05 25 20 14 24 18 23 31 24 16 19 11 15 22 22 13 25 

DIWTIB_1/ln(age)_03 19 27 28 28 34 28 21 23 27 16 16 17 11 9 10 26 

DIWTIB_1/ln(age)_05 27 26 15 22 30 27 32 28 19 27 17 21 28 26 18 27 

DIWTIB_1/ln(age)_10 26 25 16 21 22 26 30 26 26 26 20 19 29 27 26 28 

LPA_10 36 6 31 29 25 31 34 29 30 29 32 30 34 30 33 29 

DDWFSB_05 29 31 29 35 35 36 9 35 31 30 35 29 25 34 29 30 

LPA_03 31 35 30 32 24 29 27 33 34 35 30 35 30 23 27 31 

LPA_05 33 32 34 31 21 35 35 30 28 32 26 32 32 29 28 32 

MDA_10 34 30 33 30 26 34 33 31 33 31 33 31 35 32 34 33 

MDA_03 30 36 32 34 23 30 26 34 35 36 34 36 31 33 32 34 

MDA_05 32 34 35 33 27 33 36 32 29 33 31 33 33 35 35 35 

DDWFSB_10 35 33 36 36 36 32 28 36 36 34 36 34 36 36 36 36 
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    Appendix A: Comparison between different failure prediction frameworks 

Author Models Criteria (Measure) Result 

Panel I: Comparison between traditional statistical models 

Press and Wilson (1976) LA and MDA models Correctness of categorical prediction 

(T1 and T2 errors) 

Two models unlikely will give significantly 

different results.  

Collins and Green 

(1982) 

LPM, MDA and LA models Correctness of categorical prediction 

(OCC, T1 and T2) 

The models produce identical, uniformly results. 

Lo (1986) MDA and LA models Power of models  There is not differences between models.  

Theodossiou (1991) 

 

LPM, LA, and PA models Correctness of categorical prediction 

(T1 and T2 errors), Calibration (BS), 

Information content (pseudo-R2) 

logit model outperforms others; CONFLICT in 

ranking of others with respect to different 

measures 

 

Lennox (1999) LA, PA, and MDA models Correctness of categorical prediction 

(T1 and T2) 

A well-specified non-linear PA and LA are 

superior over DA   

Bandyopadhyay (2006) 

 

MDA models and logit models 

 

Correctness of categorical prediction 

(OCC, T1 and T2) 

Discriminatory power (ROC), 

Information content (pseudo-R2, LL) 

CONFLICT in rankings using different criteria 

and measures 

 

Tinoco and Wilson 

(2013) 

logit models taking to 

accounting different categories 

of features 

Discriminatory power (ROC, Gini, 

KS), Calibration accuracy (HL) 

CONFLICT in rankings using different criteria 

and measures 

Panel II: Comparison between traditional statistical models and survival analysis models  

Luoma and Laitinen 

(1991) 

Cox-hazard, MDA and LA 

models 

Correctness of categorical prediction 

(T1 and T2) 

SA model is inferior than MDA and LA models 

Shumway (2001) Discrete-time SA model, MDA, 

LA and PA 

Correctness of categorical prediction 

(OCC) 

SA model which, encompasses both accounting 

and market information (respectively, only 

accounting information) outperforms 

(respectively, underperforms) other statistical 

techniques 
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Panel III: Comparison between statistical models and contingent claims models 

Hilligeist et al. (2004) BSM-based, LA and MDA 

models 

Information content (LL and Pseudo-

R2) 

BSM-based model outperforms both original and 

refitting version of LA and MDA models  

Reisz and Perlich (2007) BSM-based, KMV, DOC and 

MDA models 

Discriminatory power (AUROC)  DOC and MDA outperforms others for 3-, 5- and 

10-year ahead; MDA outperforms others for 1-

year ahead failure prediction 

Agarwal and Taffler 

(2008) 

Contingent claims based models 

[HKCL (2004) and BHSH 

(2008)] and MDA model of 

Taffler (1984) 

Discriminatory power (ROC), 

Information content (pseudo-R2, LL), 

Correctness of categorical prediction 

(EV for different cost of 

misclassification) 

MDA model outperforms HKCL (2004) on ROC 

and pseudo-R2. CONVERSELY, HKCL (2004) 

outperforms BHSH (2008) and MDA model on 

LL.  

Panel IV: Comparison between contingent claims models and survival analysis models 

Campbell et al. (2008) A new duration dependent SA 

without time-variant baseline, 

SA model [Shumway (2001)] 

and KMV model 

Information content (pseudo-R2, LL)  

 

The suggested new SA model outperforms both 

Shumway (2001) and KMV models.  

Panel V: Comparison between contingent claims, survival analysis and traditional statistical models 

Wu et al. (2010) MDA [Altman (1968)], Logit 

model [Ohlson (1980)], probit 

model [Zmijewski (1984)] 

hazard model [Shumway (2001)] 

and BSM- model [HKCL 

(2004)]  

Information content (pseudo-R2, LL)  

Correctness of categorical prediction 

(OCC), Discriminatory power (ROC) 

Shumway outperforms others with respect to LL 

and Pseudo-R2. Logit model performs better that 

others with respect to OCC. 

CONFLICT in rankings  

Bauer and Agarwal 

(2014) 

Traditional model, contingent 

claims based model and hazard 

model 

Discriminatory power (ROC), 

Information content (LL, R2) and 

Correctness of categorical prediction 

(OCC, T1, T2) 

Hazard model outperforms others; CONFLICT in 

ranking of others with respect to different 

measures 
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